a2 United States Patent

US009448795B2

10) Patent No.: US 9,448,795 B2

Valentine et al. 45) Date of Patent: Sep. 20, 2016
(54) LIMITED RANGE VECTOR MEMORY (56) References Cited
ACCESS INSTRUCTIONS, PROCESSORS,
METHODS, AND SYSTEMS U.S. PATENT DOCUMENTS
. . . 2004/0250044 Al  12/2004 Isomura et al.
(71) Applicant: Intel Corporation, Santa Clara, CA 5006/0005082 Al 1/2006 Fossum et al.
(Us) 2010/0318608 Al* 12/2010 Huang ............... GOGF 9/4856
709/205
(72) Inventors: Robert Valentine, Kiryat Tivon (IL); 2011/0138122 A1~ 6/2011 Hughes et al.
Elmoustapha Ould-Ahmed-Vall 201201440 Al 62012 Tl eral
all et al.
Chandler, AZ (US) 2012/0151156 Al 6/2012 Citron et al.
(73) Assignee: Intel Corporation, Santa Clara, CA (Continued)
Us
US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this N 102103483 A 62011
%atserg ilsszﬁ)e;ngedoczir adjusted under 35 GB 2461850 A 12010
S.C. y 0 days. .
(Continued)
(21)  Appl. No.: 14/969,249 OTHER PUBLICATIONS
(22) Filed: Dec. 15, 2015 Office Action received for Korean Patent Application No. 10-2014-
30543, mailed on May 20, 2015, 4 pages of English Translation and
(65) Prior Publication Data 5 page of Korean Office Action.
US 2016/0170749 A1 Jun. 16, 2016 (Continued)
Primary Examiner — Scott Sun
Related U.S. Application Data (74) Attorney, Agent, or Firm — Vecchia Patent Agent,
(63) Continuation of application No. 13/838,544, filed on LLC
Mar. 15, 2013, now Pat. No. 9,244,684 (57) ABSTRACT
(51) Int. CL A processor of an aspect includes a plurality of packed data
GO6F 9/38 (2006.01) registers. The processor also 1I}c!udes aunit cpupled with the
GO6F 9/30 (2006.01) p.ac.ked data registers. The unit is operable, in response to a
GO6F 9/355 (2006.01) l%mlt.ed range vector memory access 1nstruct.10n.. The 1n§tmg-
tion is to indicate a source packed memory indices, which is
GO6F 12/02 (2006.01) . R :
) US. Cl to have a plurality of packed memory indices, which are to
(52) US. CL ) be selected from 8-bit memory indices and 16-bit memory
CPC . GOGF 9/30036 (2013.01); GOGF 9/355 indices. The unit is operable to access memory locations, in
(2013.01); GO6F 9/3887 (2013.01); GO6F only a limited range of a memory, in response to the limited
. 12/023 (.2013~.01); GO61" 2212/1044 (2013.01) range vector memory access instruction. Other processors
(58) Field of Classification Search are disclosed, as are methods, systems, and instructions.

None
See application file for complete search history.

o7 15 BN B pckepanE 8
MEMORY INDICES )
100 | 150 | 200 813
&

25 Claims, 25 Drawing Sheets

SOURCE
303

EXECUTION LOGIC
809

FOUR5128IT

51

512-BITWIDE
MEMCRY LOAD LOGIC ‘ D E
80 ) 150

FOUR 512-BIT LOADS
T0 LOADENTRE

- 256-BYTE LIWITED

RANGETO
REGISTERS: ON-PROCESSOR e
7 REGISTERS i

U 50

EMu

C
RANGE

NOT
| ‘ F JF\NDEXED! A

[o] []

MEMORY
810

NoT
INDEXED ( D !

o]
MEMORYINDICE BASED DATA
L REARRANGEMENT LOGIC
842

[} 7 15 23 3

DESTINATION
39 STORAGE

% LOCATION
n ¢ n! 515
i



US 9,448,795 B2

Page 2
(56) References Cited Jp 2004-355597 A 12/2004
Jp 2008-505396 A 2/2008
U.S. PATENT DOCUMENTS Jp 2011-134318 A 7/2011

2012/0254591 Al 10/2012 Hughes et al.

2013/0054899 Al 2/2013 Ginzburg et al.

KR 10-2003-0064807 A 8/2003
KR 10-2004-0086529 A 10/2004

2013/0311530 Al* 11/2013 Lee GOGF 7/548 OTHER PUBLICATIONS

708/441
2013/0326160 Al  12/2013 Sperber et al. Notice of Allowance received for U.S. Appl. No. 13/838,544,
2014/0006469 Al* 1/2014 Gueron ................. GOG6F 7/5324 mailed on Sep. 16, 2015, 8 pages.

708/620 combined search and examination report received for United King-

2014/0095831 Al 4/2014 Grochowski et al.
2014/0149713 Al 5/2014 Jha et al.
2014/0164667 Al 6/2014 Resnick et al.
2014/0181464 Al 6/2014 Forsyth et al.
2014/0201498 Al 7/2014 Ould-Ahmed-Vall et al.

JP
JP
JP

FOREIGN PATENT DOCUMENTS

06-044292 A 2/1994
09-062654 A 3/1997
09-231347 A 9/1997

dom Patent Application No. 14039762, mailed on Sep. 1, 2014, 5
pages.

Office Action received for Japanese Patent Application No. 2014-
042958, mailed on Apr. 28, 2015, 3 pages of English Translation and
1 page of Japanese Office Action.

Office Action received for Chinese Patent Application No.
201410097314.8, mailed on Feb. 29, 2016, 8 pages of Chinese
Office Action.

* cited by examiner



U.S. Patent

Sep. 20, 201

6 Sheet 1 of 25

US 9,448,795 B2

FIG. 1
PROCESSOR
100
INSTRUCTION SET ARCHITECTURE
101
INSTRUCTION SET ARCHITECTURAL
10 REGISTERS
T 106
LIMITED
RANGE VECTOR sl
MEMORY ACCESS
INSTRUCTION(S) 107
103 _
mT T T o T T ! ' MASK REGISTERS !
LIMITED | !
| RANGEGATHER | ! (OPTIONAL) |
| INSTRUCTION(S) 1 . 108 |
| (OPTIONAL) ! e .
| 104 I
b e e e o
! LIMITED !
| RANGE SCATTER | EXECUTION LOGIC
| INSTRUCTION(S) ! 100
| (OPTIONAL) | 109
i 105 l
EXTERNAL MEMORY
110
LIMITED RANGE

120




US 9,448,795 B2

Sheet 2 of 25

Sep. 20, 2016

U.S. Patent

............................... ] Z 'Ol
l
r— T 7====77== _
m 724 74 “
| (I¥NOILdO) JONVH Q3L |}
L YSYI NOILYY3dO vLYa |
_ d3x0vd 304N0S 0lz !
___ AMONIN TyNY3LXT |
802 0N\ el T J
SYALSIOTA NSV
NOILY¥3d0 ¥1va 03H0Vd
|.| ||||||||||||||||||||||||||||||| | . |
" 5 N
t (43HLYD ¥0d) ¥1yQd AV 1 ! 502
| 1INST¥0INOILYO0T IS 224
| J9OVHOISNOLYNILSIA | i <
CCIITTTIITIIIIIIn 01901 Awﬂ
_ __ | 91907 300030
! bic _ NOILND3X3 €0¢
" (43L1V¥9S H04) | (431L¥0S FONVY
| YLYOQDiOvd 308N0S 1 il
] I IHLYS FONVY
............... ! aaLmn o3
— | Emsmoi%j NOILONYLSNI
X7 _ 'Tv0S '35V SS300V AMONIN
SIOIONI AOWIW | [T T ] 40123A JONVY
3M0¥d 304N0S _ | Zre i 3NN
“ | sullsiol
_ 350ddNd-
n “ | F0naTE | .
SYALSIOIY VIV AIHOvd | %@wﬁ%@m
.................. L NOILONYLSNI



U.S. Patent Sep. 20, 2016 Sheet 3 of 25 US 9,448,795 B2

FIG. 3
330~

RECEIVE LIMITED RANGE VECTOR MEMORY ACCESS INSTRUCTION
INDICATING SOURCE PACKED MEMORY INDICES HAVING PLURALITY
OF PACKED MEMORY INDICES SELECTED FROM 8-BIT MEMORY [ 337
INDICES AND 16-BIT MEMORY INDICES

v

ACCESS MEMORY LOCATIONS, IN ONLY A LIMITED RANGE OF
MEMORY, IN RESPONSE TO LIMITED RANGE VECTOR MEMORY 332
ACCESS INSTRUCTION




U.S. Patent Sep. 20, 2016 Sheet 4 of 25 US 9,448,795 B2

FIG. 4
LIMITED RANGE
GATHER
OPERATION
403~ SOURCE PACKED
8-BIT MEMORY
INDICES
0 7 15 . 511 413
134 | 231 | 20 | 135 5 21 30 186
(
MEMORY
55 410
B Bs | B B _J
b LT 7130 | umimep
GE
19 135 20 21 i
186
By | B4 Be4 —
B2 L 231
0 7 15 512
B B B B B B B B
1 2 3 4 5 6 7 ( 64 ,_\415
§6 PACKED DATA
RESULT IN
DESTINATION
STORAGE

LOCATION



U.S. Patent Sep. 20, 2016 Sheet 5 of 25 US 9,448,795 B2

MASKED FIG. 5
LIMITED RANGE
GATHER
SOURCE PACKED
OPERATION 8-BIT MEMORY
503 INDICES
0 7 15 511 913

£
»

134 231 20 135 5 21 30 186

{(
2]

0 1 2 63
F'_“__T___'T___l——_l___r—__'r'__—I'SSI'—_T
S T T S T T Y B N T W
| | | | | | | | souRee
-t —— = — & — — = — - PACKED DATA
OPERATION MASK
. (OPTIONAL)
B B, | B B
Sy LS8 7% | umimep
134 135 20 21 520 510
186 J
By | B4 Bg4 —
By |23
{C

3T

0 7 15 {} 512

B By * B4 Bs Bs * Bsa 515
PACKED DATA
" RESULTIN
DESTINATION
STORAGE
LOCATION




U.S. Patent

Sep. 20, 2016

Sheet 6 of 25

US 9,448,795 B2

LIMITED RANGE FIG. 6
SCATTER
OPERATION
605 SOURCE
R PACKED
0 7 15 511 MEMORY
y INDICES
134 | 231 | 20 | 135 | 5 | 21 | 30 ||186|__—613
SOURCE
PACKED
0 7 15 511 DATA
y ELEMENTS
¢
B5 L B3 BG B7 L-30
> A LIMITED RANGE
134 135 620
v ] ) 610
By | By MEMORY
Bga[ 20 (B, |-231




U.S. Patent

Sep. 20, 2016

Sheet 7 of 25

US 9,448,795 B2

FIG. 7
MASKED
LIMITED RANGE
SCATTER
OPERATION
705 SOURCE
~ PACKED
0 7 15 511 MEMORY
INDICES
134 | 231 | 20 | 135 | 5 | 21 | 30 ||188| /713
SOURCE
PACKED
0 7 15 511 DATA
ELEMENTS
By | B, | Bs | By | Bs | Bs | By ||Beal 714
A ——— — — e — — i — 53
T T I BT B 1 P76
oty ot | s
e e -——t——" —— 4~ —- PACKED DATA
OPERATION MASK
(OPTIONAL)
Bs‘\s *Be | | % 20 LIMITED RANGE
T —_
134 135 20 21 720 MgMgRY
By | Bg
Bea| 20 [B, |-231

3T



U.S. Patent

Sep. 20, 2016

Sheet 8 of 25

US 9,448,795 B2

FiG. 8
0 7 v 23 3 39 PACKED BYTE 803
MEMORY INDICES )
0 50 | 100 | 150 | 200 | _—s13
EXECUTION LOGIC
809 AL, 50
512-BIT WIDE
MEMORY LOAD LOGIC < 10 IF_]
840 ) 150
200
FOUR 512-BIT LOADS
TO LOAD ENTIRE
FOUR 512-BIT o MITED C
REGISTERS ON-PROCESSOR Llﬁﬁ%D
511 7 REGISTERS = ANGE
B F T~NOT A
INDEXED JENORY
G C 810
—NOT
INDEXED D
E
MEMORYINDICE BASED DATA
REARRANGEMENT LOGIC
842
DESTINATION
0 7 15 23 31 39 STORAGE
& LOCATION
A B c D E |85

LC.

LY



U.S. Patent Sep. 20, 2016 Sheet 9 of 25 US 9,448,795 B2

FIG. 9
PACKED DATA
REGISTERS
907 \
512 BITS
AL
r N
Zmmgq ymmg Xxmmg
ymmysg Xmmys
H_J
128 BITS
k M
Y
256 BITS
me31




U.S. Patent Sep. 20, 2016

Sheet 10 of 25

US 9,448,795 B2

FIG. 10
PACKED DATA
OPERATION MASK
REGISTERS

1

® ;
Ko
K1
Ky
K3
Ky
Ks
Kg




US 9,448,795 B2

Sheet 11 of 25

Sep. 20, 2016

U.S. Patent

LL "OId

SINIWTT3 V1va 119-8 ANV Y1vYAd A3MIVd LIG-ZIS ¥O4 SLIg-¥9 TTv 3SN
AL

SINIW3T3 LIg-9) ANY V.1v¥Q A3N0Vd LIg-Z1G ¥O 'SINAWITT L1g-8 ANY Y.LvYA AIN0Vd 118-952 4O SLIG-Z€ ¥IMOT3SN
A
r A

SIN3W3T3 118-9) ANY V1vQ L1g-95¢ HO 'SINIW3T3 L1g-8 ANV Y.1¥d AIHOVd 119-82) HO4 SLIg-9L ¥3IMOT3SN
AL
s B

SINJW3T3 11g-9) ANV V1vQd A3MOVd L18-82) ¥O4 SL18-8 4IMOT3SN
A
r A

0 L gl 1€ €9

/ 8011

d31SI9TY USYIN
NOILVH3d0 V1¥a aandvd



US 9,448,795 B2

Sheet 12 of 25

Sep. 20, 2016

U.S. Patent

DEZL (11314 300040 Tras

rAROREIE TNV A R ¢ (4

AT 14 AR
e i )
Uaaa | 0oC | Ialalalal | owa | o3y | alxiy
ANE S e IEETEEET
5Z1 O

Gl OsL 0L gy m%mmﬁo T |
o 1 S :
™~ §r ,
s yla 818 i W oon Wt,r AALAIALALA

Wl | vz
WA | o3y

1A
OO

) &)

3LA8 818

49/

J1AE We Q0K

72} %7z, Gl
T3t NOULVHEd0 Fgvg TN I90N

[T LA LATTATA) ) [l ald] { o]

Y974 Q73 HIGIA
SLZL YA 300540 Lyieod
522} 01314 30020 TINA 823 "Oi4
5221 0314
ONIBOONZ
A 0zl T3l
&3 =
e LY0A

AR § "
Lalaln]alalalalmBnlwdninnlg]xul vo !

( 0zeh Q1 A | 30000 5024 X3y | m.L

o,

8921 Gl

7S [ ARSREI 2

&

Z0ZL X143 X3A
YZl 'Dl4




US 9,448,795 B2

Sheet 13 of 25

Sep. 20, 2016

U.S. Patent

veL Bid
T POE} IS B s b A'd b ]
0281 291 | e _ reet _ poEl 7561 f
\ aEd | S0%EL agel | owseranmd | zgesel goves | oEs
S S o) a2 2 gl wdityinaivie [veoaraL T80 ssaoov | (LA Wollviao 3
L W vivo | ddsa fTOY VWO | NON AT T JAHOMENL Sigioay| gove [YPRO
| i | ! 5
TR0 INGN
m ; | “ , | sgan0v MORaN
B Iy A 4 Y h ,
Qi) H295) - [ qopes | w80 | 28 e
ol L Todie] o, e femil | 58 | 58
ERTE DTy e 0l " Er ,
A AN M me 31704 viva X Jm ) i%m&mm L M s
BE5E f . 2
m | O | | M SZ81 THOdVEL JEL
{ | NO! Huwwfw | _ / AHONIN
A PP ToeL I b ™ 3
Qs weeiwh . Y verel | owel | oz A
Loy b anm| S g S¥EL O LIV M oy vl o300y | qudd | am | |
R N e 045N Yiva RO ssvio | woian| xadN! ivoiiviadol, R4 .
C L vivo R A on jisien wses O
! | m ! P giel NOWYEEdO |
I ‘ | | [39AL 10 STHOOV AHONIN ON
; Pocs 9681 i .
08} gac] 074 vorel | el | ziEl
e amataan] S ool YGOSR | vzer fvsoer vl ssaoov| giaw | g | B i |
3 LVICINAIISYW L naiaa VR O] CONNOY | 9810 JAMOWEN] YIONI INOLYMEH0) bt uw
o JLEM vivg W IROD mzmom L A O JE3ISIOd]  38vE
| | vzer ! | Maﬁ A0 II BN TNOY %me y
T — N ) 01 S | I "' SSI00 RNOWSIN ON 853005
A1NGRE HOLO3A ORENTD . i _ w ; i
L .._m
g VEEL U : _
0l | gian | Eeeey Baes ¥E 455 T R
Voo amalaman) 3R L ] 098 4 weer o vaze |EEEE gm | ee | 50 ] g o |
ERYGE T RS T mﬁm% ssyiod i) xaa Iollvazaol, G32
i viva | A s PO oses 03 NOLYME40 NOWLYINZWONY yaisiozy|  3sva
i T ) i
0T34 300240 TIN4



US 9,448,795 B2

Sheet 14 of 25

Sep. 20, 2016

U.S. Patent

i&s _ézéé _ )
M VT AR - B I . o | TR B | g |
o amataial S Fa S gnigy Q98 1865EL 15 agyg fost) Gk 99961 8 S L gy | oamEg | AN
~ }MM D . x%mm\wy il...L..las.H ~Q mwu. %Lmamwlm K«J RJ&FZOQ m PUWQQ{ XM@W& /MOW.MQMW&O QMM,ML
LGSR IS T8, 0q) 0L [acifapievi 3 S50 | a0 2 (0%, N 5L E iy
QY C.... 1 7078 AP R o - s W — |
128} i
agl ‘61 W b { w P opmoovman ss300y
u .w b | m m JRHONEW
} } ] | | |
W P | i |
{ { g i i {
! | i § § !
! i i { ] |
* T | M {
| Iy | W m
* ¥ -
e ! Y oot ¥ e e
JEN L o 96l Q1dich 7 3%@% ol 2 ?& ue g |
NH e ug,m}i_ﬁ,qm\._ dbicah ,mumﬁif s N G O e
7167 0 3aAL
m _ m JN@ SOV 00T TER ON
A Ao B , \ 1
0| ¢ T o o Ve Toae T 4
A | o5 ) v SN 417 ck | ) Qmmmwmmww 2996, 9) 653 ,_ ,mum@ ﬁwm %mm |
oo 5 N \.
; NE s m%, THING ONE -
w _ « w&& SO 007 Wi ON S
G081 LYPROA NOLONYLSH : “ ! w e
RIONT4 BOL0ZA DIHENES . ' Ok
{ . 1 . —
A P e 1 AP ) e 1 7
8 £ o ree anal 8 PpE} 28t} |
e, a0 L@wm Q| VSEL 0B YI38 Cen | g ALl qua | dad %wmr*
EICAE T T e «a , i Tion., XE0N  INOILYH3dO) vyt
[ SLMM Yiva | 3 dsig Y 085 031 NOLLYHIH0 NOULYANINONY bualsiosyl  3ovd
- 'y - viET % &
(7315 30000 T103



US 9,448,795 B2

Sheet 15 of 25

Sep. 20, 2016

U.S. Patent

L OEPL 07314 20040 TS o7l OV
| o EVEL ONIDOOKE
A3 NOLLYH3d0 38V "y ddue
dla] el
027t -t s
0 R £ 4 1314 AMA avrl FhhL e 3
(& N\V Loy . 98} QIS HLOM D,
| mmm oo | alalalal o Toga | al Lulalxly Tt oy
RGN I GEY Lo
TRy Sl IV 300040 .
piCL O 300040 TN 8y} "old
. 007) 1YVHO0S NOLLOMHLEN! ATONSMS ¥0L03A D14[03dS
‘ N AS O3 SEHOIHM - A
01074 INSMITYILSIT 3HE ATNO SAI0H DIt} T mOQZu,
108 'N8dS10 SV 01 038343y U0=00W N3H® T PAFER
N.BcS1G] 829¢1 (134 ¥0L0Y4 INSWIOY IS0 T O o) G151 il
26l 0okl obbl 6571 R AHATY .Y sovy
4R PO 9P s aoqdo s GZrL @A AL | BO00A0 XEW |
- IWNM - N_ 2k ¥ f . -
i W;JMJWJ_ T — T T ._; ” - Y - ]
st glojtodalan e i waaom BAlAlAA LA A DAl g L g o el adnlafala [ wdm]nfale [ 2o
[ YO | R [
{0L=00W NIHM 254510 ! J ] 7GE L i
w2981 0731 INIVea0y %a " xwmmm «.wmm, . Olyl X2
usply | oy [TGRL gypl ) PEPL Ly VYR B POEL (1219 HAGIM
mmmw x| S5 Wy | 93 JOOW) EELA INZPETS Y170 .
g £ 391 £ 89 4 2071 Xid34d 343
2LAS G 31AB W GON Vol 0l




U.S. Patent Sep. 20, 2016 Sheet

CLASSFIELD ALPHAFIELD

16 of 25 US 9,448,795 B2

FIG. 14D e s BETA FIELD 1354
AUGMENTATION OPERATION FIELD 1350 ~UTGETRTE
RS MODFED 1407 —
FIELD 13522 [a B |B]8] RS B{B[B]
ROUND 135241 ' 1 T RS2 | ] ]
1
sag FECDLILZ 1" | DATA/‘O safsi[so
ROUND1 3O5!§ERATION FIELD 1358 I TRANSFORM
. : | 1352A2  DATA TRANSFORM
U=0 ROUND CONTROL FIELD 1354A ! FIELD 1354B
MOD FIELD 1442
[aTe e[ ] [o0lor[or]oR[10]
6 A
EVICTION — = f=ror e
winT FELD sz fs ]! SIB_JI.D&_D_%.JILPI
13628 L'V_J U450~ Den
DATA MANIPULATION FIELD 1354C
T MOD FIELD 1447 T
RL 11 RL
T, [ G,
WRITE L1 |
CMASK ri|ro 1‘ ROUND | |Lt|Lo] O VSIZE
ONTROL ) 1357A | ™ 135782
FIELD ROUND '
1352C ROUND o | VECTOR [ENGTH FIELD
MOD FIELD 1442
01]0R|[1
oo LEFE] (S
] 1 ]
—= e
Lt | Lo B‘ | siB /DDy DDy
HECTOR LENGTH BROADCAST FIELD 13578




US 9,448,795 B2

Sheet 17 of 25

Sep. 20, 2016

U.S. Patent

2

Oy

518 9
G151 siysibay $Sep S

0S5E FTid H3E8ID3H
L9714 AN O3IMOYd NN

SLg P8
A

3
i
m
%
aasvIy M
)
i
§

silaoe
{d428%)
SP5L

¢4 'oi4 IS HIALBIOTE MIVLS d4 ¥V IVOS

5Z5) sieisibay ssoding jBieust)

HUE
5148 987
A,
SL88ZL
Sty SLUIA
Dpnux ik 151174
L . i
SLBZIG
0151 ssesibay Jopep
SLIg Yo X 81

0051 FUNLOILHIYY 318103




US 9,448,795 B2

Sheet 18 of 25

Sep. 20, 2016

U.S. Patent

w
i
{d
b

fmo }
e}m@ ud

R b181
- LiNn LN 3HOY0 YLYg | 0281 LIND
IHOYD 1) AHONI
7 LN 1L YL
v 0981 (LSO NOLD3X3
gmw
| z981
{SLnn g ,
asany Ammm%
Ao X3 M
X ¥
Jo T T e e e e
!
9594 (S)UNA ST HILSIDTH TS A W
T f .
r == - P53l | 891 ‘4
oo _CJ Ta) [aTata) gt M
- uuzw;wmy%mﬁnmmmf S N NN
T T T —n ral i
| _souwoomy iy _ T et SR
- — PRI AN o SNIONS NOILNOIXE
P e 0EGL
MAEAuIESSEs LINA ONT LNOYA
[ BEGLHOIZINOILOORSNE | / _
i 0691 THOD
9594 LINN 911 NOILONMLSN ZE91 LINA
b1 YE0L LN SHOVD NOLLOMEISN NOILDIOEYd HONYYE
Q i i - ‘.o!:txl.l:!&‘ll.q!.ll- e
za | O e LTI
AN 115 Sﬁ Oy AHONI 710 oior | somy | oogy o SO ) 2081
© hoitaors AHORER | 3evisnoaa | ovs IVIAZHOS DAY ,mm 00TV (00530 ,..zw%w SeTEE)
N e EN aasioa y L 4 e
¥9} "Dl 009} 3NTEdld <"




US 9,448,795 B2

Sheet 19 of 25

Sep. 20, 2016

U.S. Patent

vo0.L

JHOVYO Y1vd i1

gcell Veell
LHIANOD 1H3IANOD
OI3NNN OIY3INNN
A
viLLL
SY31S193yd
HOLJ3A
by |
{ /
0cil oLl
ATZZIMS 31vOInd3y

'ed

&

8¢Ll

NV JOLDO3AN FAIM-91

F

A

9cll

SYILSIOIY MSYIN FLIFIM

g/l 'old

~—p>

c0/1

HHOMLIN ONIY

A
¥

vOLL

JHOVO
¢13H1 40 1388NS 1vO0T

J

A

90.LL

3JHOVO L1

1478%

Sd31SIO3Y
d0103A

[474*
SY31S193yd
dYIvOos

3

0LLL
LINN
HOL103A

A

v

4

.

80/1
LINN
dYIvOS

A

001

30003A NOILONYLSNI

V.l 'Old




US 9,448,795 B2

Sheet 20 of 25

Sep. 20, 2016

U.S. Patent

| SN [T T T T T ZEENe T T T
| MITIOUINOD T~ ==~ == === ————
algl (S)LNn || om\fmm\m,@_z* TH%W@E@%& =
Y¥3TIONINOD |1 = F M 1 wos 1 08!
sne LN T | o a| | (SILINN
0181 LINN | 3Hovo ! 3HOVO
INZOY WALSAS | N08l 3400 | ¥Z08) 00

—— — s e

8l Old
8081 J1907T .
3S04ddnd
WIO3dS b
/oow_ d0SS300Hd



U.S. Patent Sep. 20, 2016 Sheet 21 of 25 US 9,448,795 B2

1915
1900 - — — ﬁ
—_ 1910

I [ 1
- '__—_:I—-— PROCESSOR | — 7
| — 1995 |
N /-/ | _— 1940
| ~ ' [ CONTROLLER
co- | _[ R | ey
| PROCESSOR | [| oo I
I |
1960 —_ - L/_—1
o . IOH1%50 |
|
| |

FIG. 19



US 9,448,795 B2

Sheet 22 of 25

Sep. 20, 2016

U.S. Patent

V1va 0z '9l4
8¢0¢ 0€02
dNY 3009 | s30maa _ | 3snow
JOVHOLS VIVA £c0e WINOD ¢eoc ITVOIAT
h 020z !J w
5102 ¥207 102 8102
H0SSIN0Nd o/ 0laNY $3I0INIA O/l I9aIdd snd
a0z~ ﬁ — — — _
960c —1 I | ze0z — | seoz
9607 —| d-d 0602 LISdIHO ] A _%wwmoomaoo_
7602 — —_——
507 2502
>
owom d-d &-m &-n_ n_-n_ ONON
—
980¢ — gg0z A \ /| L 9/02
807
0502
— 280¢ 4
Nl N
125114 2807
AHOWIN
H0SSIN0HA0D AHONIN
/40SS300Yd HOSSIN0Yd

/ 000¢



US 9,448,795 B2

Sheet 23 of 25

Sep. 20, 2016

U.S. Patent

vE0c
AHOWINW

¢E0¢
AHONTN

12 'old
L1z
0/l AQY931
0602 9650z —1 A/
13SdIHD
860¢ —1 dd 607 —1 dd
502 l\a « 2502 |\» «
e[|
0802 d-d d-d d-d d-d 0,02
9807 — 8802 A \ \ L 9/02
802
0502
— 2802 4
10 10
H0SSIN0Yd H0SS3I00ud
oz |
| s3onaaon

—— e——— st

/// 1] 74




US 9,448,795 B2

Sheet 24 of 25

Sep. 20, 2016

U.S. Patent

7181 (S)LINN
vz 0€22 UITIOHLNOD
LINA AYIgsia | | CECe UINRYINT e wvs AMOWIN
Q3LVYOILNI
9181 (S)LINN
mmj\mﬂzoo 7022 SIIINN LoINNODSIIN
“ _
_
| 908} (S)LINN IHOYD AIHYHS
T~~~
| | Noosh | | V08!
| | SLND | | eme | |(SILINN
0181 LINN | 3HOV0 3HOVO
INIOV WALSAS _rzge 240D .u VZ08l 340D

01¢¢ 40SS3004dd NOILYOIddY

022z (S)40SS3004d00

/ 0022

dIHO V NO W31SAS

¢¢ old



US 9,448,795 B2

Sheet 25 of 25

Sep. 20, 2016

U.S. Patent

y0€¢ Y3400 98X

90€Z 3003 AHVNIE 98X

¢0EC IOVNONYT 13A3T HOH

C1E¢ ¥31HIANOD
NOILONYLSNI
IXAIE
JHYML40S
FAVYMTAVH
S |
91€¢
3400 13S NOILONYLSNI
98X INO 1SV
1Y H1IM ¥0SS3004d

80€¢ ¥F NANOD
138 NOILONHLSNI
JAILYNES LY

01€¢ 3000 AYVNIE
13S NOILONYLSNI
JAILLYNYTLTY

y1€¢ 340D 13S NOILONYLSNI
98X NV LNOHLIM ¥0SS3004d




US 9,448,795 B2

1
LIMITED RANGE VECTOR MEMORY
ACCESS INSTRUCTIONS, PROCESSORS,
METHODS, AND SYSTEMS

RELATED APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 13/838,544, filed on Mar. 15, 2013,
entitted “LIMITED RANGE VECTOR MEMORY
ACCESS INSTRUCTIONS, PROCESSORS, METHODS,
AND SYSTEMS”, which is hereby incorporated herein by
reference in its entirety and for all purposes.

BACKGROUND

1. Technical Field

Embodiments relate to processors. In particular, embodi-
ments relate to processors to execute memory access instruc-
tions.

2. Background Information

Processors are commonly operable to execute instructions
to access memory. For example, processors may execute
load instructions to load or read data from memory and/or
store instructions to store or write data to memory.

Certain processors are operable to execute vector load
instructions. These vector load instructions are also referred
to in the arts as vector gather instructions, or simply gather
instructions. Intel® Advanced Vector Extensions Program-
ming Reference, document reference number 319433-011,
published June 2011, describes several vector gather
(VGATHER) instructions. Examples include VGATH-
ERDPD, VGATHERQPD, VGATHERDPS, VGATHER-
QPS, VPGATHERDD, VPGATHERQD, VPGATHERDQ,
and VPGATHERQQ. These vector gather instructions may
be used to gather, read, or load multiple data elements from
memory, using multiple corresponding memory indices.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments. In the drawings:

FIG. 1 is a block diagram of an embodiment of a
processor to execute one or more limited range vector
memory access instructions.

FIG. 2 is a block diagram of an embodiment of an
instruction processing apparatus to process one or more
limited range vector memory access instructions.

FIG. 3 is a block flow diagram of an embodiment of a
method of accessing a limited range of memory in response
to a limited range vector memory access instruction.

FIG. 4 is a block diagram illustrating an embodiment of
a limited range vector gather operation.

FIG. 5 is a block diagram illustrating an embodiment of
a masked limited range vector gather operation.

FIG. 6 is a block diagram illustrating an embodiment of
a limited range vector scatter operation.

FIG. 7 is a block diagram illustrating an embodiment of
a masked limited range vector scatter operation.

FIG. 8 is a block diagram of an example implementation
embodiment of a limited range vector gather operation.

FIG. 9 is a block diagram of an example embodiment of
a suitable set of packed data registers.

FIG. 10 is a block diagram of an example embodiment of
a suitable set of packed data operation mask registers.

15

20

25

40

45

50

55

65

2

FIG. 11 is a diagram illustrating an example embodiment
of'a 64-bit packed data operation mask register in which the
number of mask bits depends on the packed data width and
the data element width.

FIG. 12A illustrates an exemplary AVX instruction format
including a VEX prefix, real opcode field, Mod R/M byte,
SIB byte, displacement field, and IMMS.

FIG. 12B illustrates which fields from FIG. 12A make up
a full opcode field and a base operation field.

FIG. 12C illustrates which fields from FIG. 12A make up
a register index field.

FIG. 13A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the invention.

FIG. 13B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the invention.

FIG. 14A is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention.

FIG. 14B is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
full opcode field according to one embodiment of the
invention.

FIG. 14C is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
register index field according to one embodiment of the
invention.

FIG. 14D is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
augmentation operation field according to one embodiment
of the invention.

FIG. 15 is a block diagram of a register architecture
according to one embodiment of the invention.

FIG. 16A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention.

FIG. 16B is a block diagram illustrating both an exem-
plary embodiment of an in-order architecture core and an
exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention.

FIG. 17A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
and with its local subset of the Level 2 (L.2) cache, according
to embodiments of the invention.

FIG. 17B is an expanded view of part of the processor
core in FIG. 17A according to embodiments of the inven-
tion.

FIG. 18 is a block diagram of a processor that may have
more than one core, may have an integrated memory con-
troller, and may have integrated graphics according to
embodiments of the invention.

FIG. 19 shown is a block diagram of a system in accor-
dance with one embodiment of the present invention.

FIG. 20 shown is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 21 shown is a block diagram of a second more
specific exemplary system in accordance with an embodi-
ment of the present invention.

FIG. 22 shown is a block diagram of a SoC in accordance
with an embodiment of the present invention.

FIG. 23 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions



US 9,448,795 B2

3

in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Disclosed herein are limited range vector memory access
instructions, processors to execute the instructions, methods
performed by the processors when processing or executing
the instructions, and systems incorporating one or more
processors to process or execute the instructions. In the
following description, numerous specific details are set forth
(e.g., specific instructions, instruction formats, packed data
formats, processor configurations, microarchitectural
details, orders of operations, etc.). However, embodiments
may be practiced without these specific details. In other
instances, well-known circuits, structures and techniques
have not been shown in detail in order to avoid obscuring the
understanding of the description.

FIG. 1 is a block diagram of an embodiment of a
processor 100 operable to execute one or more limited range
vector memory access instruction(s) 103. In some embodi-
ments, the processor may be a general-purpose processor
(e.g., of the type used in desktop, laptop, tablet, handheld,
cellular phone, and like computing devices). Alternatively,
the processor may be a special-purpose processor. Examples
of suitable special-purpose processors include, but are not
limited to, graphics processors, network processors, com-
munications processors, cryptographic processors, co-pro-
cessors, and digital signal processors (DSPs), to name just a
few examples. The processor may be any of various com-
plex instruction set computing (CISC) processors, various
reduced instruction set computing (RISC) processors, vari-
ous very long instruction word (VLIW) processors, various
hybrids thereof, or other types of processors entirely.

The processor has an instruction set architecture (ISA)
101. The ISA represents a part of the architecture of the
processor related to programming and includes the native
instructions, architectural registers, data types, addressing
modes, memory architecture, interrupt and exception han-
dling, and external input and output (I/O) of the processor.
The ISA is distinguished from the microarchitecture, which
represents the particular design techniques used to imple-
ment the ISA.

The ISA includes architecturally-visible registers 106
(e.g., an architectural register file). The architectural regis-
ters generally represent on-die processor storage locations.
The architectural registers are also referred to herein simply
as registers. Unless otherwise specified or apparent, the
phrases architectural register, register file, and register are
used herein to refer to registers that are visible to the
software and/or programmer and/or the registers that are
specified by macroinstructions or assembly language
instructions to identify operands. These registers are con-
trasted to other non-architectural or non-architecturally vis-
ible registers in a given microarchitecture (e.g., temporary
registers used by microinstructions, reorder buffers, retire-
ment registers, etc.). The illustrated registers include packed
data registers 107. Each of the packed data registers is
operable to store packed data, vector data, or SIMD data. In
some embodiments, the registers may also optionally
include packed data operation mask registers 108, although
this is not required.

The ISA includes an instruction set 101 that is supported
by the processor. The instructions of the instruction set
represent assembly language instructions, machine-level
instructions, or macroinstructions (e.g., instructions pro-
vided to the processor for execution), as opposed to micro-

10

20

25

30

35

40

45

50

55

60

65

4

instructions or micro-ops (e.g., those which result from a
decoder decoding macroinstructions). The instruction set
includes the one or more limited range vector memory
access instruction(s) 103 that are each operable to cause the
processor to access a limited range 120 of an external
memory 110. In some embodiments, the limited range 120
may represent only a portion or subset (e.g., a contiguously
indexable portion or subset) of the external memory 110. In
some embodiments, the instruction(s) 103 may optionally
include one or more limited range vector gather
instruction(s) 104 operable to cause the processor to read,
load, or gather data elements from potentially non-contigu-
ous locations in the limited range 120 of the external
memory 110. In some embodiments, the instruction(s) 103
may optionally include one or more limited range vector
scatter instruction(s) 105 operable to cause the processor to
write, store, or scatter data elements to potentially non-
contiguous locations in the limited range 120 of the external
memory 110. In various embodiments, there may be any-
where from a single limited range vector memory access
instruction to multiple or many such instructions.

The processor also includes execution logic 109. The
execution logic is operable to execute or process the limited
range vector memory access instruction(s) 103 and to access
the limited range responsive to the instructions (e.g., gather
elements from the limited range or scatter elements to the
limited range. Examples of suitable execution logic include,
but are not limited to, execution units, functional units,
memory access units, memory execution units, gather units,
scatter units, and the like.

FIG. 2 is a block diagram of an embodiment of an
instruction processing apparatus 200. In some embodiments,
the instruction processing apparatus 200 may be, or may be
included in, the processor of FIG. 1, or one similar. Alter-
natively, the instruction processing apparatus 200 may be, or
may be included in, a different processor. Moreover, the
processor of FIG. 1 may include a different instruction
processing apparatus than that of FIG. 2.

The instruction processing apparatus 200 may receive the
limited range vector memory access instruction 203. For
example, the instruction may be received from an instruction
fetch unit, an instruction queue, a memory, etc. In some
embodiments, the instruction may represent a limited range
vector gather instruction or a limited range vector scatter
instruction.

The apparatus includes a set of packed data registers 207.
In some embodiments, the apparatus may optionally include
a set of packed data operation mask registers 208, although
this is not required. The registers may represent architectural
on-processor (e.g., on-die) processor storage locations. The
registers may be implemented in different ways in different
microarchitectures using well-known techniques, and are
not limited to any particular type of circuit. Examples of
suitable types of registers include, but are not limited to,
dedicated physical registers, dynamically allocated physical
registers using register renaming, and combinations thereof.

The limited range vector memory access instruction may
explicitly specify (e.g., through one or more bits or a field)
or otherwise indicate (e.g., implicitly indicate) a source
packed memory indices 213 having a plurality of packed
memory indices. In some embodiments, the packed memory
indices may be packed 8-bit byte memory indices or packed
16-bit word memory indices. Conventionally, vector gather
instructions typically implement significantly larger 32-bit
or 64-bit memory indices, since they are expected to be able
to gather from anywhere in the memory 210 instead of just
from within the limited range 220 within the memory 210.



US 9,448,795 B2

5

In the case of a vector gather instruction/operation, or a
vector memory load instruction/operation, the instruction
may indicate a destination storage location 215 where a
result packed data, including data elements loaded or gath-
ered from the limited range 220 of the memory 210, is to be
stored. In the case of a vector scatter instruction/operation,
or a vector memory store instruction/operation, the instruc-
tion may indicate a source packed data 214, including a
plurality of data elements to be written or scattered to the
limited range 220 of the memory 210. As shown, in the some
embodiments, the source packed memory indices 213, the
source packed data 214, and the destination storage location
215 may be packed data registers of the set of packed data
registers 207. Alternatively, other storage locations may
optionally be used for one or more of these.

In some embodiments, the limited range vector memory
access instruction 203 may optionally specify or otherwise
indicate a source packed data operation mask 216, although
this is not required. Packed data operation masks, and their
use for predication or conditional control, will be discussed
further below. Other embodiments may optionally be per-
formed without masking or predication.

Referring again to FIG. 2, the illustrated instruction
processing apparatus includes decode logic 211 (e.g., a
decode unit or decoder). The instruction decode logic may
receive and decode higher-level machine instructions or
macroinstructions (e.g., the instruction 203), and output one
or more lower-level micro-operations, micro-code entry
points, microinstructions, or other lower-level instructions
or control signals that reflect and/or are derived from the
original higher-level instruction. The one or more lower-
level instructions or control signals may implement the
operation of the higher-level instruction through one or more
lower-level (e.g., circuit-level or hardware-level) operations.
The decode logic may be implemented using various dif-
ferent mechanisms including, but not limited to, microcode
read only memories (ROMs), look-up tables, hardware
implementations, programmable logic arrays (PLAs), and
other mechanisms known in the art. In other embodiments,
instead of having the decode logic 211, an instruction
emulator, translator, morpher, interpreter, or other instruc-
tion conversion logic (e.g., implemented in software, hard-
ware, firmware, or a combination) may be used. In still other
embodiments, a combination of instruction conversion logic
and a decode logic may be used. Some or all of the
instruction conversion logic may potentially be located
off-die from the rest of the instruction processing apparatus,
such as on a separate die or in memory.

Referring again to FIG. 2, the execution logic 209 is
coupled with the decode logic 211. The execution logic is
also coupled with the packed data registers 207, and in some
embodiments, optionally with the packed data operation
mask registers 208. Examples of suitable execution logic
includes, but is not limited to, an execution unit, a functional
unit, a memory access unit, a memory execution unit, a
gather unit, a scatter unit, and the like. The execution logic
and/or the apparatus may include specific or particular logic
(e.g., circuitry, transistors, or other hardware potentially
combined with software and/or firmware) operable to
execute and/or process the instruction 203 and access the
limited range of the memory in response to the instruction.
In some embodiments, the execution unit includes at least
some integrated circuitry, transistors, or other circuitry or
hardware of a semiconductor die.

The execution logic is operable, in response to and/or as
a result of the limited range vector memory access instruc-
tion 203 (e.g., in response to one or more control signals

10

15

20

25

30

35

40

45

50

55

60

65

6

decoded or otherwise derived from the instruction 203) to
access the limited range 220 of the memory 210. For
example, in an embodiment of a limited range vector gather
instruction, the execution unit may use the source packed
memory indices 213 to gather or load data elements from
potentially non-contiguous locations in the limited range
220 of the memory 210 and store the gathered or loaded data
elements in the destination storage location 215. In an
embodiment of a limited range vector scatter instruction, the
execution unit may use the source packed memory indices
213 to scatter or write data elements from a source packed
data 214 to potentially non-contiguous locations in the
limited range 220 of the memory 210.

In some embodiments, the limited range vector memory
access instruction 203 may be used to access only the limited
range 220 of the memory 210. In some embodiments, the
instructions indicate only 8-bit byte or 16-bit word memory
indices. Conventional vector gather instructions typically
allow the data elements to be gathered from anywhere in
memory. As a result, typically either 32-bit or 64-bit memory
indices are used. These 32-bit or 64-bit memory indices have
enough bits to allow data elements to be potentially gathered
from substantially anywhere in memory, or at least from a
relatively large amount of memory (e.g., that capable of
being addressed by either 32-bits or 64-bits).

However, one potential drawback to using 32-bit or 64-bit
memory indices is that their relatively large size may tend to
limit the number of such memory indices that may be stored
in a single packed data register indicated as a source operand
of the vector gather instructions. For example, only four
64-bit memory indices, or only eight 32-bit memory indices,
may fit within a 256-bit register. Moreover, in some cases it
may be desired to gather relatively smaller data elements,
such as 8-bit byte data elements or 16-bit word elements.
However, the relatively large size of the memory indices
tends to limit the number of such 8-bit byte or 16-bit word
elements that can be gathered. For example, often only the
same number of data elements can be gathered as the
number of 32-bit or 64-bit memory indices that fit in a
packed data register. As a result, it is often not possible to
gather as many of these elements as desirable due in part to
the large size of the 32-bit or 64-bit memory indices.

In some embodiments, instead of such relatively large
32-bit or 64-bit memory indices, relatively smaller memory
indices, such as 8-bit byte or 16-bit word memory indices,
may be used by embodiments of limited range vector
memory access instructions/operations. Advantageously,
this may help to increase the number of such memory
indices that may be stored in a single packed data register as
source packed memory indices. For example, thirty two
8-bit memory indices, or sixteen 16-bit memory indices,
may fit within a 256-bit register, instead of just four 64-bit
memory indices or eight 32-bit memory indices. As another
example, sixty four 8-bit memory indices, or thirty two
16-bit memory indices, may fit within a 512-bit register.
Correspondingly, this may help to increase the number of
data elements that may be gathered or scattered by an
embodiment of a single limited range vector gather or scatter
instruction/operation.

In some embodiments, these relatively smaller 8-bit byte
or 16-bit word memory indices may be insufficient to access
data elements from anywhere in memory. Rather, these
smaller 8-bit or 16-bit memory indices may access data
elements in only a limited range (e.g., a contiguous subset
capable of being indexed by the 8-bit or 16-bit memory
indices) of a larger overall memory (e.g., one that would
need to be addressed by 32-bit or 64-bit memory indices). In



US 9,448,795 B2

7

some embodiments, the ISA supported by the processor may
include one or more other memory access instructions (e.g.,
a vector gather instruction) that indicate and use 32-bit or
64-bit memory indices to access data elements from any-
where in the overall memory. For example, in some embodi-
ments, the limited range corresponding to the 8-bit memory
indices may consist of no more than 256 data elements or
256 storage locations that are capable of being uniquely
indexed by an 8-bit byte memory index. As another
example, in some embodiments, the limited range may
consist of no more than 65536 data elements or 65536
storage locations that are capable of being uniquely indexed
by a 16-bit byte memory index. In other embodiments, only
a portion or subset of these data elements or storage loca-
tions capable of being indexed may be used as the limited
range (e.g., rather than using the full range of a 16-bit index
only a portion of that range may be used).

Although the limited range vector memory access instruc-
tions/operations are not capable of accessing data elements
anywhere in memory, there are various reasons why it may
be advantageous to access data elements from within only
the limited range of a much larger memory. For example,
this may be the case when a table, array, data structure, or
other arrangement or collection of data can be stored in the
limited range. Often, an algorithm may need to access
multiple or many data elements from within the table, array,
data structure, or other arrangement or collection of data at
the same time. As one example, the algorithm may transpose
a matrix or otherwise rearrange or restructure the data in
which case it may need to access many data elements. As
another example, the algorithm may access data elements
that are separated by a constant stride, for example, every
second, third, fourth, or Nth data element. More generally,
there are many instances where an algorithm may be used to
access multiple or many data elements from within an
arrangement or collection data that can be stored within a
limited range of memory that can be indexed by 8-bit byte
or 16-bit word memory indices.

Advantageously, when used in such instances, embodi-
ments of the limited range vector memory access instruc-
tions/operations disclosed herein may be able to access (e.g.,
gather or scatter) relatively more data elements within a
single instruction/operation due in part to the smaller 8-bit or
16-bit memory indices. Larger indices, which would tend to
limit the number of such data elements accessed, are not
needed, since the data elements are being gathered from only
within the limited range instead of anywhere in memory.
Moreover, as will be discussed further below, in some
embodiments, the limited range vector memory access
instructions/operations may be more efficient to implement
and/or may be faster than conventional vector gather instruc-
tions/operations which use sequential accesses for each of
the accessed data elements (e.g., because fewer memory
accesses each involving multiple data elements may be
performed).

To avoid obscuring the description, a simple instruction
processing apparatus 200 has been described, although the
instruction processing apparatus may optionally include one
or more other conventional components. Examples of such
conventional components include, but are not limited to, an
instruction fetch unit, an instruction scheduling unit, a
branch prediction unit, instruction and data caches, instruc-
tion and data translation lookaside buffers (TLB), prefetch
buffers, microinstruction queues, microinstruction sequenc-
ers, bus interface units, a retirement/commit unit, a register
renaming unit, and other components conventionally
employed in processors. Moreover, embodiments may have

20

30

35

40

45

55

8

multiple cores, logical processors, or execution engines
having either the same or different instruction set and/or
ISA. There are literally numerous different combinations
and configurations of such components in processors, and
embodiments are not limited to any particular such combi-
nation or configuration.

FIG. 3 is a block flow diagram of an embodiment of a
method 330 of processing an embodiment of an instruction.
In various embodiments, the method may be performed by
a general-purpose processor, special-purpose processor, or
other instruction processing apparatus or digital logic
device. In some embodiments, the operations and/or method
of FIG. 3 may be performed by and/or within the processor
of FIG. 1 and/or the apparatus FIG. 2. The components,
features, and specific optional details described herein for
the processor and apparatus of FIGS. 1-2 also optionally
apply to the operations and/or method of FIG. 3. Alterna-
tively, the operations and/or method of FIG. 3 may be
performed by and/or within a similar or entirely different
processor or apparatus. Moreover, the processor of FIG. 1
and/or the apparatus of FIG. 2 may perform operations
and/or methods the same as, similar to, or entirely different
than those of FIG. 3.

The method includes receiving the limited range vector
memory access instruction, at block 331. In various aspects,
the instruction may be received at a processor, an instruction
processing apparatus, or a portion thereof (e.g., an instruc-
tion fetch unit, a decoder, an instruction converter, etc.). In
various aspects, the instruction may be received from an
off-die source (e.g., from a DRAM memory, a disc, inter-
connect, etc.), or from an on-die source (e.g., from an
instruction cache). The limited range vector memory access
instruction may indicate a source packed memory indices
having a plurality of packed memory indices. In some
embodiments, the memory indices may be one of 8-bit
memory indices and 16-bit memory indices. In some
embodiments, the memory indices may be 8-bit memory
indices. In some embodiments, the source packed memory
indices may include at least 32 memory indices.

Memory locations, in only a limited range of a memory,
may be accessed in response to the limited range vector
memory access instruction, at block 332. In some embodi-
ments, the limited range may be accessed with one or more
memory addresses of 32-bits or 64-bits each. In some
embodiments, the limited range may include only 256 bytes.
In some embodiments, as will be explained further below,
the access may be performed through multiple data element
loads that may load multiple data elements each, including
both needed and un-needed data elements. Such multi-
element loads may help to improve speed or efficiency in
some embodiments. In some embodiments, the entire lim-
ited range may be loaded from the memory to storage
locations of the processor (e.g., on-die registers).

The illustrated method involves architecturally visible
operations (e.g., those visible from a software perspective).
In other embodiments, the method may optionally include
one or more microarchitectural operations. By way of
example, the instruction may be fetched, decoded, scheduled
out of order, source operands may be accessed, an execution
logic may be enabled to perform microarchitectural to
implement the operations of the instruction, the execution
logic may perform the microarchitectural operations, results
may be put back into program order, etc.

FIG. 4 is a block diagram illustrating an embodiment of
a limited range gather operation 403 that may be performed
in response to an embodiment of a limited range gather
instruction. The limited range gather instruction may specify



US 9,448,795 B2

9

or otherwise indicate a source packed memory indices 413
having a plurality of packed memory indices. As shown, in
some embodiments, the memory indices may be 8-bit byte
memory indices and the source packed memory indices may
be 512-bits wide and may include sixty-four 8-bit byte
memory indices. Alternatively, in other embodiments 16-bit
word memory indices, or other memory indices less than
32-bits, may optionally be used. Moreover, in other embodi-
ments, other packed data widths besides 512-bits may
optionally be used, such as, for example, 64-bit, 128-bit,
256-bit, or 1024-bit packed data widths. By way of example,
the 64-bit, 128-bit, and 256-bit widths may, respectively, be
able to store eight, sixteen, and thirty-two 8-bit byte memory
indices, or half as many each of the 16-bit word memory
indices. In the illustrated example, the memory indices have
the values, from the least significant position (on the left) to
the most significant position (on the right) right, 134, 231,
20, 135, 5, 21, 30, . . . 186. These values are only examples.

An embodiment of a limited range vector gather operation
may be performed in response to and/or as a result of the
embodiment of the limited range gather instruction. The
limited range vector gather operation may load or gather
data elements from a limited range 420 of a memory 410. As
discussed previously, the limited range may represent only
a small subset (e.g., a contiguous subset capable of being
indexed by the 8-bit or 16-bit memory indices) of the overall
generally much larger memory (e.g., which may be indexed
by other instructions using 32-bit or 64-bit memory indices).
The extent or size of the limited range may be based on the
width in bits of the memory indices. For example, each 8-bit
byte memory index may be operable to uniquely index or
address any of 256 different locations or data elements, and
in some embodiments, the limited range may include only
those 256 locations or data elements (e.g., 256 bytes or
words). The gathered data elements may be indicated by the
corresponding memory indices of the source packed
memory indices 413. Each memory index may point to a
corresponding memory location and/or a data element stored
therein. For example, in the illustrated embodiment, the
memory index 134 points to the memory location in the
limited range that stores data element B1, the memory index
231 points to the memory location in the limited range that
stores data element B2, and so on.

A packed data result 415 may be stored in a destination
storage location in response to and/or as a result of the
limited range vector gather instruction/operation. In one
aspect, the instruction may specity or otherwise indicate the
destination storage location. In some embodiments, the
packed data result may include data elements gathered from
potentially non-contiguous regions from within only the
limited range 420 but not from within other portions of the
memory 410. As shown, in some embodiments, the packed
data result may be 512-bits wide and may include sixty-four
8-bit byte data elements. Alternatively, 16-bit word or 32-bit
doubleword data elements may be gathered and may be
stored in either wider or narrower result packed data. In the
illustrated example, the packed data result in the destination
stores, from the least significant position (on the left) to the
most significant position (on the right) right, the data ele-
ments B1, B2, B3, B4, BS, B6, B7, .. . B64. This is just one
example.

FIG. 5 is a block diagram illustrating an embodiment of
a masked limited range gather operation 503 that may be
performed in response to an embodiment of a masked
limited range gather instruction. The masked operation of
FIG. 5 has certain similarities to the unmasked operation of
FIG. 4. To avoid obscuring the description, the different

10

15

20

25

30

35

40

45

50

55

60

10

and/or additional characteristics for the masked operation of
FIG. 5 will primarily be described without repeating all the
similar or common characteristics relative to the unmasked
operation of FIG. 4. However, it is to be appreciated that the
these previously described characteristics of the unmasked
operation also optionally apply to FIG. 5 unless clearly
apparent otherwise.

The masked limited range gather instruction may specify
or otherwise indicate a source packed memory indices 513
that has a plurality of packed memory indices. As shown, in
some embodiments, the memory indices may be 8-bit byte
memory indices and the source packed memory indices may
be 512-bits wide and may include sixty-four 8-bit byte
memory indices. Alternatively, in other embodiments 16-bit
word memory indices, or other memory indices less than
32-bits, may optionally be used. Moreover, in other embodi-
ments, other packed data widths besides 512-bits may
optionally be used, such as, for example, 64-bit, 128-bit,
256-bit, or 1024-bit packed data widths.

In some embodiments, the masked limited range gather
instruction may optionally specify or otherwise indicate a
source packed data operation mask 516. The packed data
operation mask may also be referred to herein simply as an
operation mask, predicate mask, or mask. The mask may
represent a predicate operand or conditional control operand
that is used to mask, predicate, or conditionally control
whether or not operations (e.g., gather operations) are to be
performed. In some embodiments, the masking or predica-
tion may be at per-data element granularity such that opera-
tions on different data elements may be predicated or con-
ditionally controlled separately and/or independently of
others. The operation mask may include multiple mask
elements, predicate elements, or conditional control ele-
ments. In one aspect, the elements may be included in a
one-to-one correspondence with corresponding source data
elements and/or result data elements. As shown, in some
embodiments, each mask element may be a single mask bit.
A value of each mask bit may control whether or not an
operation (e.g., a gather operation) is to be performed.
According to one possible convention, each mask bit may
have a first value (e.g., be set to binary 1) to allow the gather
operation to be performed and a result data element to be
stored in the destination storage location, or a second value
(e.g., be cleared to binary 0) to not allow the gather operation
to be performed and/or not allow a gathered data element to
be stored in the destination storage location.

As shown, in the case of the source packed memory
indices 513 being 512-bits wide, and having sixty four 8-bit
memory indices, the source packed data operation mask 516
may be 64-bits wide with each bit representing a predicate
or mask bit. Alternatively, the source packed data operation
mask may have other widths, for example, a width in bits
equal to the number of memory indices in the source packed
memory indices 513 (e.g., eight, sixteen, thirty two, etc.). In
the illustrated example, the mask bits, from least significant
(on the left) to most significant (on the right), are 1, 1, 0, 1,
1,1, 0, . . . 1. This is just one example. According to the
illustrated convention, a mask bit value of binary 0 repre-
sents a masked out element, whereas a mask bit value of
binary 1 indicates an unmasked element. For each unmasked
element, the associated gather operation is to be performed
and the gathered data element is to be stored in the corre-
sponding data element of the packed data result 515. Each
mask bit corresponds to a memory index and result data
element in a corresponding position. For example, in the
illustration the corresponding positions are in vertically
alignment one above the other.



US 9,448,795 B2

11

An embodiment of a masked limited range vector gather
operation 503 may be performed in response to and/or as a
result of the embodiment of the masked limited range gather
instruction. The operation may load or gather data elements
from a limited range 520 of a memory 510 subject to the
conditional control of the source packed data operation mask
516. A packed data result 515 may be stored in a destination
storage location in response to and/or as a result of the
masked limited range vector gather instruction/operation. In
some embodiments, data may only be gathered if the cor-
responding mask bit in the packed data operation mask is set
to one. Asterisks (*) are shown in positions of the result
packed data where the corresponding mask bits are masked
out (e.g., in the illustrated example cleared to binary 0). As
shown, in some embodiments, the packed data result may be
512-bits wide and may include sixty-four 8-bit byte data
elements. Alternatively, 16-bit word or 32-bit doubleword
data elements may be gathered and may be stored in either
wider or narrower result packed data. In the illustrated
example, the packed data result in the destination stores,
from the least significant position (on the left) to the most
significant position (on the right) right, the data elements B1,
B2, * B4, BS, B6, *, . . . B64.

In some embodiments, merging-masking may be per-
formed. In merging-masking, when a given destination data
element is masked out, the initial or pre-existing value of the
data element in the destination storage location may be
preserved unchanged (i.e., not be updated with a result of the
operation). In other embodiments, zeroing-masking may be
performed. In zeroing-masking, when a given destination
data element is masked out, the corresponding given desti-
nation data element may be zeroed out or a value of zero
may be stored in the corresponding given destination data
element. Alternatively, other predetermined values may be
stored in the masked out destination data elements. Accord-
ingly, in various embodiments, the data element positions
indicated by the asterisks (*) may have zeroed out values or
the values of data elements initially in the destination
storage location prior to the gather operation.

FIG. 6 is a block diagram illustrating an embodiment of
a limited range scatter operation 605 that may be performed
in response to an embodiment of a limited range scatter
instruction. The limited range scatter instruction may
specify or otherwise indicate a source packed memory
indices 613 having a plurality of packed memory indices. As
shown, in some embodiments, the memory indices may be
8-bit byte memory indices and the source packed memory
indices may be 512-bits wide and may include sixty-four
8-bit byte memory indices. Alternatively, in other embodi-
ments 16-bit word memory indices, or other memory indices
less than 32-bits, may optionally be used. Moreover, in other
embodiments, other packed data widths besides 512-bits
may optionally be used, such as, for example, 64-bit, 128-
bit, 256-bit, or 1024-bit packed data widths.

The limited range scatter instruction may also specify or
otherwise indicate a source packed data 614 having a
plurality of packed data elements that are to be scattered. As
shown, in some embodiments, the packed data elements may
be 8-bit byte data elements, and the source packed data 614
may be 512-bits wide and may include sixty-four of such
8-bit byte data elements. Alternatively, in other embodi-
ments 16-bit word data elements, or 32-bit doubleword data
elements, may optionally be used. Moreover, in other
embodiments, other widths for the source packed data
besides 512-bits may optionally be used, such as, for
example, 64-bit, 128-bit, 256-bit, or 1024-bit packed data
widths. In some embodiments, the widths of the memory

5

10

15

20

25

30

35

40

45

50

55

60

12

indices ma may be the same as the width of the data
elements, although this is not required (e.g., a twice as wide
register may be used for the data elements than for the
memory indices).

An embodiment of a limited range vector scatter opera-
tion may be performed in response to and/or as a result of the
embodiment of the limited range scatter instruction. The
limited range vector scatter operation may store, write, or
scatter data elements to a limited range 620 of a memory
610. As discussed elsewhere herein, the limited range may
represent only a small subset (e.g., a contiguous subset
capable of being indexed by the 8-bit or 16-bit memory
indices) of the overall generally much larger memory 610
(e.g., which may be indexed by other instructions using
32-bit or 64-bit memory indices). The limited range 620 may
have any of the optional characteristics or attributes of the
limited ranges described elsewhere herein. The source
packed data elements 614 may be scattered to locations
indicated by and/or derived from the source packed memory
indices 613. Each memory index may point to a correspond-
ing memory location. In some embodiments, the data ele-
ments may be scattered to optionally/potentially non-con-
tiguous memory locations within only the limited range 620
but not from within other portions of the larger memory 610.
For example, in the illustrated embodiment, the memory
index 134 points to the memory location in the limited range
where the data element B1 is to be written, the memory
index 231 points to the memory location in the limited range
where the data element B2 is to be written, and so on.

FIG. 7 is a block diagram illustrating an embodiment of
a masked limited range scatter operation 705 that may be
performed in response to an embodiment of a masked
limited range scatter instruction. The masked operation of
FIG. 7 has certain similarities to the unmasked operation of
FIG. 6. To avoid obscuring the description, the different
and/or additional characteristics for the masked operation of
FIG. 7 will primarily be described without repeating all the
similar or common characteristics relative to the unmasked
operation of FIG. 6. However, it is to be appreciated that the
previously described characteristics of the unmasked opera-
tion also optionally apply to FIG. 7 unless clearly apparent
otherwise.

The masked limited range scatter instruction may specify
or otherwise indicate a source packed memory indices 713
having a plurality of packed memory indices. As shown, in
some embodiments, the memory indices may be 8-bit byte
memory indices and the source packed memory indices may
be 512-bits wide and may include sixty-four 8-bit byte
memory indices. Alternatively, in other embodiments 16-bit
word memory indices, or other memory indices less than
32-bits, may optionally be used. Moreover, in other embodi-
ments, other packed data widths besides 512-bits may
optionally be used, such as, for example, 64-bit, 128-bit,
256-bit, or 1024-bit packed data widths.

The limited range scatter instruction may also specify or
otherwise indicate a source packed data 714 having a
plurality of packed data elements that are to be scattered. As
shown, in some embodiments, the packed data elements may
be 8-bit byte data elements, and the source packed data 614
may be 512-bits wide and may include sixty-four of such
8-bit byte data elements. Alternatively, in other embodi-
ments 16-bit word data elements, or 32-bit doubleword data
elements, may optionally be used. Moreover, in other
embodiments, other widths for the source packed data
besides 512-bits may optionally be used, such as, for
example, 64-bit, 128-bit, 256-bit, or 1024-bit packed data
widths.



US 9,448,795 B2

13

In some embodiments, the masked limited range scatter
instruction may optionally specify or otherwise indicate a
source packed data operation mask 716. The mask 716 may
optionally have any of the characteristics or attributes of the
other packed data operation masks, predicate masks, or
conditional control operands described elsewhere herein. As
shown, in the case of the source packed memory indices
having sixty four memory indices and/or the source packed
data having sixty four data elements, the source packed data

operation mask 716 may be 64-bits wide with each bit may )

represent a predicate or mask bit for a corresponding data
element and/or memory index in a corresponding relative
position. Alternatively, the source packed data operation
mask may have other widths, for example, a width in bits
equal to the number of memory indices and/or the number
of data elements. According to the illustrated convention, a
mask bit value of binary O represents a masked out element,
whereas a mask bit value of binary 1 indicates an unmasked
element.

An embodiment of a limited range vector scatter opera-
tion may be performed in response to and/or as a result of the
embodiment of the limited range scatter instruction. The
limited range vector scatter operation may store, write, or
scatter data elements to a limited range 720 of a larger
memory 710. As discussed elsewhere herein, the limited
range may represent only a small subset (e.g., a contiguous
subset capable of being indexed by the 8-bit or 16-bit
memory indices) of the overall generally much larger
memory (e.g., which may be indexed by other instructions
using 32-bit or 64-bit memory indices). The limited range
720 may have any of the optional characteristics or attributes
of' the limited ranges described elsewhere herein. The source
packed data elements 714 may be scattered to locations
indicated by and/or derived from the source packed memory
indices 713 under the predicated or conditional control of
the source packed data operation mask 716. In some
embodiments, the data elements may be scattered to option-
ally/potentially non-contiguous memory locations within
only the limited range 720 but not from within other portions
of the larger memory 710. For example, in the illustrated
embodiment, the data element B1 may be written to the
location in the limited range indicated by the memory index
value 134, the data element B2 may be written to the
location in the limited range indicated by the memory index
value 231, and so on. In the illustrated example, the data
element B3 for memory index value 20, and the data element
B7 for memory index value 30, are masked out such that a
scatter may not be performed. This is indicated in the
illustration by asterisks (*) in the locations corresponding to
memory index value 20 and memory index value 30. In
some cases, these memory locations may have their preex-
isting values before the scatter operation (e.g., may not be
changed by the scatter operation).

The following pseudocode represents an example
embodiment of a limited range vector gather instruction/
operation VXLATB:

VXLATB zmm1 {k1}, vm8z; //Other vector lengths are

also allowed

(KL, VL)=(16, 128), (32, 256), (64, 512)

FOR j 0 TO KL-1

ie—j*8
TF k1 [j]
THEN DEST[i+7:i]«~-MEM[BASE_ADDR+

SignExtend(VINDEX[i+7:1])* SCALE+DISP]

ELSE *DEST[i+7:i]«-remains unchanged*
;Merging masking is used
FI,
ENDFOR
DEST[MAX_VL-1:VL]<-0

20

25

35

40

45

50

55

[

0

o

5

14

The following pseudocode represents an example
embodiment of a limited range vector gather instruction/
operation VBTALXB:

VBTALXB zmm1 {k1}, vm8z; ///Other vector lengths are

also allowed

(KL, VL)=(16, 128), (32, 256), (64, 512)

FOR j«<-0 TO KL-1

ie—j*8
IF k1[j]
THEN MEM[BASE_ADDR+SignExtend(VINDEX
[i+7:1])*
SCALE+DISP]«-SRCJi+7:1]
ELSE *DEST[i+7:i]«-remains unchanged*
;Merging masking is used
FI,

ENDFOR

In the above pseudocode, zmml represents a 512-bit
packed data register. The register zmm1 is used as a desti-
nation (DEST) for VXLATB and as a source (SRC) for
VBTALXB. The k1l represents a 64-bit mask register. KL,
represents a mask length, and VL represents a vector length,
and these are selected from any one of (16, 128), (32, 256),
(64, 512) for either instruction. The vin8z represents a vector
array of memory operands specified using vector scale index
base memory addressing. The array of memory addresses
are specified using a common base register, a constant scale
factor, and a vector index register with individual elements
of 8-bit index value in an 512-bit ZMM register. VINDEX
represents the vector of memory indexes. The SignExtend
represents a sign extension operation on the memory index
VINDEX. BASE_ADDR represents a base address and
SCALE represents a scale as commonly used in memory
access. The symbol < represents storing. The i and j are
loop counters.

FIG. 8 is a block diagram of an example implementation
of'an embodiment of a limited range vector gather operation
803 that may be performed in response to an embodiment of
a limited range gather instruction. In some embodiments, the
operation 803 may be performed by and/or within the
processor of FIG. 1 and/or the apparatus FIG. 2. Alterna-
tively, the operation 803 may be performed by and/or within
a similar or entirely different processor or apparatus. More-
over, the processor of FIG. 1 and/or the apparatus of FIG. 2
may perform operations similar to, or entirely different than,
those of FIG. 8. Moreover, in some embodiments, aspects of
the operation 803 may optionally be incorporated into the
method of FIG. 3 which in embodiments may be performed
by and/or within the processor of FIG. 1 and/or the apparatus
FIG. 2.

The limited range gather instruction may specify or
otherwise indicate a source packed memory indices 813 and
a destination storage location 815. As shown, in some
embodiments, the memory indices may be 8-bit byte
memory indices, although this is not required. In the illus-
trated example, the memory indices have the values, from
the least significant position (on the left) to the most sig-
nificant position (on the right) right, 0, 50, 100, 150, 200.
These values are only examples, although notice that all
values are within the range of 0 to 255 capable of being
indexed by byte indices.

An embodiment of execution logic 809 may perform the
limited range vector gather operation 803. Similar to previ-
ously discussed embodiments, the operation may gather data
elements that are indicated by the memory indices from
within only a limited range 820 of a memory 810 and store



US 9,448,795 B2

15

the gathered data elements in corresponding result data
elements in the destination storage location 815. As shown
in the illustrated example, the memory indices 0, 50, 100,
150, 200 may indicate data elements with values A, B, C, D,
E in the limited range, and these values A, B, C, D, E may
be stored in the corresponding result data elements of the
destination storage location. The limited range may have any
of the optional attributes mentioned elsewhere herein.

One way to implement a vector gather instruction is to
load or gather each data element separately or individually
through a separate load operation (e.g., a microoperation).
For example, eight load operations may be performed
sequentially, one after the other, to gather eighth data
elements. Such sequential load operations generally tend to
take a significant amount of time to complete. Also, during
these sequential load operations, page faults may potentially
occur. Consequently, the processor generally needs to be
able to track all of the load operations and monitor comple-
tion of the gather instructions in case such page faults do
happen to occur.

However, in some embodiments, rather than loading or
gathering single data elements, multiple data elements may
be loaded or otherwise retrieved from the limited range of
the memory onto the processor per load operation. That is,
in some embodiments, the limited range vector gather opera-
tion may be implemented using one or more multiple data
element loads. As shown in the illustrated example embodi-
ment, the execution logic 809 may include 512-bit wide
memory load logic 840 coupled with the limited range. The
512-bit wide memory load logic may perform 512-bit loads
to load as many data elements as fit within the 512-bits in a
single load operation. For example, a single 512-bit load
operation may load sixty-four 8-bit byte data elements. In
some embodiments, an entire 256-byte limited range 820
may be loaded into the processor using four 512-bit loads to
respectively load four 512-bit non-overlapping portions of
the 256-byte limited range. As shown, in some embodi-
ments, the entire 256-bit loaded limited range may be stored
in four 512-bit registers, or alternatively could be stored in
eight 256-bit registers or two 1024-bit registers. Any on-
processor storage locations are potentially suitable including
dedicated or existing registers architectural or non-architec-
tural. As another option, rather than 512-bit loads, narrower
(e.g., 128-bit, 256-bit, etc.) or wider (e.g., 1024-bit) loads
may optionally be used. Moreover, if no needed data ele-
ments are within a given portion of the limited range, one or
more of these loads may optionally be omitted.

Each load may potentially, depending on the values of the
memory indices, load both needed/desired and un-needed/
un-desired data elements. For example, each load may load
at least one data element at a memory address that is to be
indicated by a memory index of the plurality and at least one
data element at a memory address that is not to be indicated
by a memory index of the plurality. For example, as shown
in the illustration, the needed/desired data elements A, B, C,
D, and E corresponding to the indices 0, 50, 100, 150, and
200, respectively, may be loaded. Additionally, un-needed/
un-desired data elements, such as, for example, data ele-
ments F and G, may be loaded. Other un-needed/un-desired
data elements (not shown for simplicity) may also be loaded.
The data elements F and G may not be indexed or addressed
by the source packed byte memory indices 813. Advanta-
geously, such multi-data element loads may allow a given
number of data elements to be gathered in less than that
given number of loads. For example, typically more than
four desired data elements may be included in the loaded
limited range, even though only four load operations were

20

25

30

40

45

16

performed. For example, in one embodiment, sixty-four
8-bit byte data elements may be gathered in only four loads.
In other embodiments, thirty two, sixteen, or eight desired
relatively smaller data elements may be loaded with a lesser
number (e.g., four) larger multiple data element loads from
memory. This in turn may help to increase the speed of the
operation.

Referring again to the illustration, the execution logic 809
also includes memory-indices based data rearrangement
logic 842. The memory-indices based data rearrangement
logic may be operable to rearrange the desired/needed data
elements from the loaded limited range and/or loaded data
elements and store them in the appropriate positions in the
destination storage location as indicated by the correspond-
ing memory indices. In some embodiments, a subset of data
elements of the entire limited range may be selectively
moved to a destination storage location based on the
memory indices. Various ways of performing the rearrange-
ments are contemplated. In some embodiments, one or more
permutes, shuffles, extracts, or other data rearrangement
operations may be used.

Various different packed data widths and data element
widths are suitable. In some embodiments, a 128-bit wide
packed data may include sixteen 8-bit byte data elements, or
eight 16-bit word data elements. In other embodiments, a
256-bit packed data may include thirty-two 8-bit byte data
elements, or sixteen 16-bit word data elements. In still other
embodiments, a 512-bit packed data may include sixty-four
8-bit byte data elements, or thirty-two 16-bit word data
elements. In further embodiments, packed data formats
either larger than 512-bits, or smaller than 128-bits, are also
suitable. For example 1012-bit packed data, and 64-bit
packed data, are suitable for either 8-bit bytes or 16-bit
words. Generally, the number of data elements is equal to the
size in bits of the packed data operand divided by the size in
bits of the data elements.

FIG. 9 is a block diagram of an example embodiment of
a suitable set of packed data registers 907. The illustrated
packed data registers include thirty-two 512-bit packed data
or vector registers. These thirty-two 512-bit registers are
labeled ZMMO through ZMM31. In the illustrated embodi-
ment, the lower order 256-bits of the lower sixteen of these
registers, namely ZMMO0-ZMM 15, are aliased or overlaid on
respective 256-bit packed data or vector registers labeled
YMMO-YMM15, although this is not required. Likewise, in
the illustrated embodiment, the lower order 128-bits of
YMMO-YMM1S5 are aliased or overlaid on respective 128-
bit packed data or vector registers labeled XMMO0-XMM1,
although this also is not required. The 512-bit registers
ZMMO through ZMM31 are operable to hold 512-bit packed
data, 256-bit packed data, or 128-bit packed data. The
256-bit registers YMMO-YMMI1S5 are operable to hold 256-
bit packed data, or 128-bit packed data. The 128-bit registers
XMMO-XMM1 are operable to hold 128-bit packed data.
Each of the registers may be used to store either packed
floating-point data or packed integer data. Different data
element sizes are supported including at least 8-bit byte data,
16-bit word data, 32-bit doubleword or single precision
floating point data, and 64-bit quadword or double precision
floating point data. Alternate embodiments of packed data
registers may include different numbers of registers, differ-
ent sizes of registers, and may or may not alias larger
registers on smaller registers.

FIG. 10 is a block diagram of an example embodiment of
a suitable set of packed data operation mask registers 1008.
Each of the packed data operation mask registers may be
used to store a packed data operation mask. In the illustrated



US 9,448,795 B2

17

embodiment, the set includes eight packed data operation
mask registers labeled kO through k7. Alternate embodi-
ments may include either fewer than eight (e.g., two, four,
six, etc.) or more than eight (e.g., sixteen, twenty, thirty-two,
etc.) packed data operation mask registers. In the illustrated
embodiment, each of the packed data operation mask reg-
isters is 64-bits. In alternate embodiments, the widths of the
packed data operation mask registers may be either wider
than 64-bits (e.g., 80-bits, 128-bits, etc.) or narrower than
64-bits (e.g., 8-bits, 16-bits, 32-bits, etc). By way of
example, a masked limited range vector memory access
instruction may use three bits (e.g., a 3-bit field) to encode
or specify any one of the eight packed data operation mask
registers kO through k7. In alternate embodiments, either
fewer or more bits may be used when there are fewer or
more packed data operation mask registers, respectively.

FIG. 11 is a diagram illustrating an example embodiment
of a 64-bit packed data operation mask register 1108 and
illustrating that the number of bits used as a packed data
operation mask and/or for masking depends upon the packed
data width and the data element width. The illustrated mask
register is 64-bits wide, although this is not required. Gen-
erally, when a single per-element masking control bit is
used, the number of bits used for masking is equal to the
packed data width in bits divided by the packed data element
width in bits. To further illustrate, consider a few possible
example embodiments. Only 8-bits, for example only the
lower 8-bits, may be used for 128-bit packed data having
16-bit data elements. Only 16-bits, for example only the
lower 16-bits, may be used either for 128-bit packed data
having 8-bit data elements, or for 256-bit packed data having
16-bit data elements. Only 32-bits, for example only the
lower 32-bits, may be used either for 256-bit packed data
having 8-bit data elements, or for 512-bit packed data having
16-bit data elements. All 64-bits-bits may be used for 512-bit
packed data having 8-bit data elements.

An instruction set includes one or more instruction for-
mats. A given instruction format defines various fields
(number of bits, location of bits) to specify, among other
things, the operation to be performed (opcode) and the
operand(s) on which that operation is to be performed. Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to the
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and
using the Vector Extensions (VEX) coding scheme, has
been, has been released and/or published (e.g., see Intel® 64
and IA-32 Architectures Software Developers Manual,
October 2011; and see Intel® Advanced Vector Extensions
Programming Reference, June 2011).

10

15

20

25

30

35

40

45

50

55

60

65

18

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may
be embodied in different formats. Additionally, exemplary
systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.

VEX Instruction Format

VEX encoding allows instructions to have more than two
operands, and allows SIMD vector registers to be longer
than 128 bits. The use of a VEX prefix provides for
three-operand (or more) syntax. For example, previous
two-operand instructions performed operations such as
A=A+B, which overwrites a source operand. The use of a
VEX prefix enables operands to perform nondestructive
operations such as A=B+C.

FIG. 12A illustrates an exemplary AVX instruction format
including a VEX prefix 1202, real opcode field 1230, Mod
R/M byte 1240, SIB byte 1250, displacement field 1262, and
IMMS 1272. FIG. 12B illustrates which fields from FIG.
12A make up a full opcode field 1274 and a base operation
field 1242. FIG. 12C illustrates which fields from FIG. 12A
make up a register index field 1244.

VEX Prefix (Bytes 0-2) 1202 is encoded in a three-byte
form. The first byte is the Format Field 1240 (VEX Byte O,
bits [7:0]), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction
format). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi-
cally, REX field 1205 (VEX Byte 1, bits [7-5]) consists of
a VEX.R bit field (VEX Byte 1, bit [7]-R), VEX X bit field
(VEX byte 1, bit [6]-X), and VEX.B bit field (VEX byte 1,
bit[5]-B). Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (rrr,
xxX, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed
by adding VEX.R, VEX.X, and VEX.B. Opcode map field
1215 (VEX byte 1, bits [4:0]-mmmmm) includes content to
encode an implied leading opcode byte. W Field 1264 (VEX
byte 2, bit [7]-W)—is represented by the notation VEX. W,
and provides different functions depending on the instruc-
tion. The role of VEX.vvvv 1220 (VEX Byte 2, bits [6:3]-
vvvv) may include the following: 1) VEX.vvvv encodes the
first source register operand, specified in inverted (1s
complement) form and is valid for instructions with 2 or
more source operands; 2) VEX.vvvv encodes the destination
register operand, specified in 1s complement form for cer-
tain vector shifts; or 3) VEX.vvvv does not encode any
operand, the field is reserved and should contain 1111b. If
VEX.L 1268 Size field (VEX byte 2, bit [2]-L)=0, it indi-
cates 128 bit vector; if VEX.LL=1, it indicates 256 bit vector.
Prefix encoding field 1225 (VEX byte 2, bits [1:0]-pp)
provides additional bits for the base operation field.

Real Opcode Field 1230 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 1240 (Byte 4) includes MOD field 1242
(bits [7-6]), Reg field 1244 (bits [5-3]), and R/M field 1246
(bits [2-0]). The role of Reg field 1244 may include the
following: encoding either the destination register operand
or a source register operand (the rrr of Rrrr), or be treated as
an opcode extension and not used to encode any instruction
operand. The role of R/M field 1246 may include the
following: encoding the instruction operand that references
a memory address, or encoding either the destination reg-
ister operand or a source register operand.

Scale, Index, Base (SIB)—The content of Scale field 1250
(Byte 5) includes SS1252 (bits [7-6]), which is used for
memory address generation. The contents of SIB.xxx 1254



US 9,448,795 B2

19
(bits [5-3]) and SIB.bbb 1256 (bits [2-0]) have been previ-
ously referred to with regard to the register indexes Xxxx
and Bbbb.

The Displacement Field 1262 and the immediate field
(IMMS) 1272 contain address data.

Generic Vector Friendly Instruction Format

A vector friendly instruction format is an instruction
format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodi-
ments are described in which both vector and scalar opera-
tions are supported through the vector friendly instruction
format, alternative embodiments use only vector operations
the vector friendly instruction format.

FIGS. 13A-13B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG.
13Ais a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof
according to embodiments of the invention; while FIG. 13B
is a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 1300 for which are
defined class A and class B instruction templates, both of
which include no memory access 1305 instruction templates
and memory access 1320 instruction templates. The term
generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)
(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte)
or 8 bit (1 byte) data element widths (or sizes); a 32 byte
vector operand length (or size) with 32 bit (4 byte), 64 bit (8
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths
(or sizes); and a 16 byte vector operand length (or size) with
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1
byte) data element widths (or sizes); alternative embodi-
ments may support more, less and/or different vector oper-
and sizes (e.g., 256 byte vector operands) with more, less, or
different data element widths (e.g., 128 bit (16 byte) data
element widths).

The class A instruction templates in FIG. 13A include: 1)
within the no memory access 1305 instruction templates
there is shown a no memory access, full round control type
operation 1310 instruction template and a no memory
access, data transform type operation 1315 instruction tem-
plate; and 2) within the memory access 1320 instruction
templates there is shown a memory access, temporal 1325
instruction template and a memory access, non-temporal
1330 instruction template. The class B instruction templates
in FIG. 13B include: 1) within the no memory access 1305
instruction templates there is shown a no memory access,
write mask control, partial round control type operation
1312 instruction template and a no memory access, write
mask control, vsize type operation 1317 instruction tem-
plate; and 2) within the memory access 1320 instruction
templates there is shown a memory access, write mask
control 1327 instruction template.

The generic vector friendly instruction format 1300
includes the following fields listed below in the order
illustrated in FIGS. 13A-13B.

10

15

20

25

30

35

40

45

50

55

60

65

20

Format field 1340—a specific value (an instruction format
identifier value) in this field uniquely identifies the vector
friendly instruction format, and thus occurrences of instruc-
tions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is
not needed for an instruction set that has only the generic
vector friendly instruction format.

Base operation field 1342—its content distinguishes dif-
ferent base operations.

Register index field 1344—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024)
register file. While in one embodiment N may be up to three
sources and one destination register, alternative embodi-
ments may support more or less sources and destination
registers (e.g., may support up to two sources where one of
these sources also acts as the destination, may support up to
three sources where one of these sources also acts as the
destination, may support up to two sources and one desti-
nation).

Modifier field 1346—its content distinguishes occur-
rences of instructions in the generic vector instruction for-
mat that specify memory access from those that do not; that
is, between no memory access 1305 instruction templates
and memory access 1320 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

Augmentation operation field 1350—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 1368, an alpha field 1352,
and a beta field 1354. The augmentation operation field 1350
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

Scale field 1360—its content allows for the scaling of the
index field’s content for memory address generation (e.g.,
for address generation that uses 2°°****index+base).

Displacement Field 1362 A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°“““*index+base+displacement).

Displacement Factor Field 1362B (note that the juxtapo-
sition of displacement field 1362A directly over displace-
ment factor field 1362B indicates one or the other is used)—
its content is used as part of address generation; it specifies
a displacement factor that is to be scaled by the size of a
memory access (N)—where N is the number of bytes in the
memory access (e.g., for address generation that uses
2selexindex+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 1374 (described later herein) and the
data manipulation field 1354C. The displacement field
1362A and the displacement factor field 1362B are optional
in the sense that they are not used for the no memory access



US 9,448,795 B2

21

1305 instruction templates and/or different embodiments
may implement only one or none of the two.

Data element width field 1364—its content distinguishes
which one of a number of data element widths is to be used
(in some embodiments for all instructions; in other embodi-
ments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

Write mask field 1370—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates
during the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
1370 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
invention are described in which the write mask field’s 1370
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field’s 1370 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 1370 content to directly specify
the masking to be performed.

Immediate field 1372—its content allows for the specifi-
cation of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic
vector friendly format that does not support immediate and
it is not present in instructions that do not use an immediate.

Class field 1368—its content distinguishes between dif-
ferent classes of instructions. With reference to FIGS. 13A-
B, the contents of this field select between class A and class
B instructions. In FIGS. 13A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g.,
class A 1368A and class B 1368B for the class field 1368
respectively in FIGS. 13A-B).

Instruction Templates of Class A

In the case of the non-memory access 1305 instruction
templates of class A, the alpha field 1352 is interpreted as an
RS field 1352A, whose content distinguishes which one of
the different augmentation operation types are to be per-
formed (e.g., round 1352A.1 and data transform 1352A.2
are respectively specified for the no memory access, round
type operation 1310 and the no memory access, data trans-
form type operation 1315 instruction templates), while the
beta field 1354 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
1305 instruction templates, the scale field 1360, the dis-
placement field 1362A, and the displacement scale filed
1362B are not present.

10

15

20

25

30

35

40

45

50

55

60

65

22

No-Memory Access Instruction Templates—Full Round
Control Type Operation

In the no memory access full round control type operation
1310 instruction template, the beta field 1354 is interpreted
as a round control field 1354A, whose content(s) provide
static rounding. While in the described embodiments of the
invention the round control field 1354A includes a suppress
all floating point exceptions (SAE) field 1356 and a round
operation control field 1358, alternative embodiments may
support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 1358).

SAE field 1356—its content distinguishes whether or not
to disable the exception event reporting; when the SAE
field’s 1356 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler.

Round operation control field 1358—its content distin-
guishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 1358 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 1350
content overrides that register value.

No Memory Access Instruction Templates—Data Trans-
form Type Operation

In the no memory access data transform type operation
1315 instruction template, the beta field 1354 is interpreted
as a data transform field 1354B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

In the case of a memory access 1320 instruction template
of class A, the alpha field 1352 is interpreted as an eviction
hint field 1352B, whose content distinguishes which one of
the eviction hints is to be used (in FIG. 13A, temporal
1352B.1 and non-temporal 1352B.2 are respectively speci-
fied for the memory access, temporal 1325 instruction
template and the memory access, non-temporal 1330
instruction template), while the beta field 1354 is interpreted
as a data manipulation field 1354C, whose content distin-
guishes which one of a number of data manipulation opera-
tions (also known as primitives) is to be performed (e.g., no
manipulation; broadcast; up conversion of a source; and
down conversion of a destination). The memory access 1320
instruction templates include the scale field 1360, and
optionally the displacement field 1362 A or the displacement
scale field 1362B.

Vector memory instructions perform vector loads from
and vector stores to memory, with conversion support. As
with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fash-
ion, with the elements that are actually transferred is dictated
by the contents of the vector mask that is selected as the
write mask.

Memory Access Instruction Templates—Temporal

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

Non-temporal data is data unlikely to be reused soon
enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a



US 9,448,795 B2

23

hint, and different processors may implement it in different
ways, including ignoring the hint entirely.
Instruction Templates of Class B

In the case of the instruction templates of class B, the
alpha field 1352 is interpreted as a write mask control (Z)
field 1352C, whose content distinguishes whether the write
masking controlled by the write mask field 1370 should be
a merging or a zeroing.

In the case of the non-memory access 1305 instruction
templates of class B, part of the beta field 1354 is interpreted
as an RL field 1357A, whose content distinguishes which
one of the different augmentation operation types are to be
performed (e.g., round 1357A.1 and vector length (VSIZE)
1357A.2 are respectively specified for the no memory
access, write mask control, partial round control type opera-
tion 1312 instruction template and the no memory access,
write mask control, VSIZE type operation 1317 instruction
template), while the rest of the beta field 1354 distinguishes
which of the operations of the specified type is to be
performed. In the no memory access 1305 instruction tem-
plates, the scale field 1360, the displacement field 1362A,
and the displacement scale filed 1362B are not present.

In the no memory access, write mask control, partial
round control type operation 1310 instruction template, the
rest of the beta field 1354 is interpreted as a round operation
field 1359A and exception event reporting is disabled (a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler).

Round operation control field 1359A—just as round
operation control field 1358, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 1359A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the invention where
a processor includes a control register for specifying round-
ing modes, the round operation control field’s 1350 content
overrides that register value.

In the no memory access, write mask control, VSIZE type
operation 1317 instruction template, the rest of the beta field
1354 is interpreted as a vector length field 1359B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

In the case of a memory access 1320 instruction template
of class B, part of the beta field 1354 is interpreted as a
broadcast field 1357B, whose content distinguishes whether
or not the broadcast type data manipulation operation is to
be performed, while the rest of the beta field 1354 is
interpreted the vector length field 1359B. The memory
access 1320 instruction templates include the scale field
1360, and optionally the displacement field 1362A or the
displacement scale field 1362B.

With regard to the generic vector friendly instruction
format 1300, a full opcode field 1374 is shown including the
format field 1340, the base operation field 1342, and the data
element width field 1364. While one embodiment is shown
where the full opcode field 1374 includes all of these fields,
the full opcode field 1374 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 1374 provides the operation code (opcode).

The augmentation operation field 1350, the data element
width field 1364, and the write mask field 1370 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.

10

15

20

25

30

35

40

45

50

55

60

65

24

The combination of write mask field and data element
width field create typed instructions in that they allow the
mask to be applied based on different data element widths.

The various instruction templates found within class A
and class B are beneficial in different situations. In some
embodiments of the invention, different processors or dif-
ferent cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the invention). Also, a single
processor may include multiple cores, all of which support
the same class or in which different cores support different
class. For instance, in a processor with separate graphics and
general purpose cores, one of the graphics cores intended
primarily for graphics and/or scientific computing may
support only class A, while one or more of the general
purpose cores may be high performance general purpose
cores with out of order execution and register renaming
intended for general-purpose computing that support only
class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-
order or out-of-order cores that support both class A and
class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would
be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
form having only instructions of the class(es) supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction Format

FIG. 14A is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 14A shows a specific
vector friendly instruction format 1400 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 1400 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD RIM field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 13 into which the
fields from FIG. 14A map are illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 1400 in the context of the generic
vector friendly instruction format 1300 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 1400 except where claimed. For
example, the generic vector friendly instruction format 1300
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
1400 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 1364 is



US 9,448,795 B2

25

illustrated as a one bit field in the specific vector friendly
instruction format 1400, the invention is not so limited (that
is, the generic vector friendly instruction format 1300 con-
templates other sizes of the data element width field 1364).

The generic vector friendly instruction format 1300
includes the following fields listed below in the order
illustrated in FIG. 14A.

EVEX Prefix (Bytes 0-3) 1402—is encoded in a four-byte
form.

Format Field 1340 (EVEX Byte 0, bits [7:0])—the first
byte (EVEX Byte 0) is the format field 1340 and it contains
0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven-
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a
number of bit fields providing specific capability.

REX field 1405 (EVEX Byte 1, bits [7-5])—consists of a
EVEXR bit field (EVEX Byte 1, bit [7]-R), EVEX.X bit
field (EVEX byte 1, bit [6]-X), and 1357BEX byte 1,
bit[5]-B). The EVEX.R, EVEX.X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using is complement form, i.e.
ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

REX' field 1310—this is the first part of the REX' field
1310 and is the EVEX.R' bit field (EVEX Byte 1, bit [4]-R")
that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the inven-
tion, this bit, along with others as indicated below, is stored
in bit inverted format to distinguish (in the well-known x86
32-bit mode) from the BOUND instruction, whose real
opcode byte is 62, but does not accept in the MOD R/M field
(described below) the value of 11 in the MOD field; alter-
native embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of
1 is used to encode the lower 16 registers. In other words,
R'Rrrr is formed by combining EVEX.R', EVEX R, and the
other RRR from other fields.

Opcode map field 1415 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 1364 (EVEX byte 2, bit [7]-
W)—is represented by the notation EVEX.W. EVEX.W is
used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

EVEX.vvvv 1420 (EVEX Byte 2, bits [6:3]-vvvv)—the
role of EVEX .vvvv may include the following: 1) EVEX.v-
vvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in 1s complement
form for certain vector shifts; or 3) EVEX.vvvv does not
encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.vvvv field 1420 encodes the 4 low-
order bits of the first source register specifier stored in
inverted (is complement) form. Depending on the instruc-
tion, an extra different EVEX bit field is used to extend the
specifier size to 32 registers.

EVEX.U 1368 Class field (EVEX byte 2, bit [2]-U)—If
EVEX.U=0, it indicates class A or EVEX.UO; if EVEX.0=1,
it indicates class B or EVEX.U1.

Prefix encoding field 1425 (EVEX byte 2, bits [1:0]-pp)—
provides additional bits for the base operation field. In
addition to providing support for the legacy SSE instructions

10

15

20

25

30

35

40

45

50

55

60

65

26

in the EVEX prefix format, this also has the benefit of
compacting the SIMD prefix (rather than requiring a byte to
express the SIMD prefix, the EVEX prefix requires only 2
bits). In one embodiment, to support legacy SSE instructions
that use a SIMD prefix (66H, F2H, F3H) in both the legacy
format and in the EVEX prefix format, these legacy SIMD
prefixes are encoded into the SIMD prefix encoding field;
and at runtime are expanded into the legacy SIMD prefix
prior to being provided to the decoder’s PLA (so the PLA
can execute both the legacy and EVEX format of these
legacy instructions without modification). Although newer
instructions could use the EVEX prefix encoding field’s
content directly as an opcode extension, certain embodi-
ments expand in a similar fashion for consistency but allow
for different meanings to be specified by these legacy SIMD
prefixes. An alternative embodiment may redesign the PLA
to support the 2 bit SIMD prefix encodings, and thus not
require the expansion.

Alpha field 1352 (EVEX byte 3, bit [7]-EH; also known
as EVEX .EH, EVEX.rs, EVEX.RL, EVEX write mask con-
trol, and EVEX.N; also illustrated with a)—as previously
described, this field is context specific.

Beta field 1354 (EVEX byte 3, bits [6:4]-SSS, also known
as EVEXs, ,, EVEXr, ,, EVEX.rrl, EVEX.LLO, EVEX-
.LLB; also illustrated with Bff)—as previously described,
this field is context specific.

REX' field 1310—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvvv.

Write mask field 1370 (EVEX byte 3, bits [2:0]-kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 1430 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 1440 (Byte 5) includes MOD field 1442,
Reg field 1444, and R/M field 1446. As previously
described, the MOD field’s 1442 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 1444 can be summarized to two
situations: encoding either the destination register operand
or a source register operand, or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 1446 may include the following:
encoding the instruction operand that references a memory
address, or encoding either the destination register operand
or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)—As previously
described, the scale field’s 1350 content is used for memory
address generation. SIB.xxx 1454 and SIB.bbb 1456—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb.

Displacement field 1362A (Bytes 7-10)—when MOD
field 1442 contains 10, bytes 7-10 are the displacement field
1362A, and it works the same as the legacy 32-bit displace-
ment (disp32) and works at byte granularity.

Displacement factor field 1362B (Byte 7)—when MOD
field 1442 contains 01, byte 7 is the displacement factor field
1362B. The location of this field is that same as that of the



US 9,448,795 B2

27

legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms
of 64 byte cache lines, disp8 uses 8 bits that can be set to
only four really useful values —128, —64, 0, and 64; since a
greater range is often needed, disp32 is used; however,
disp32 requires 4 bytes. In contrast to disp8 and disp32, the
displacement factor field 1362B is a reinterpretation of
disp8; when using displacement factor field 1362B, the
actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 1362B substitutes the legacy x86 instruction set 8-bit
displacement. Thus, the displacement factor field 1362B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset).

Immediate field 1372 operates as previously described.
Full Opcode Field

FIG. 14B is a block diagram illustrating the fields of the
specific vector friendly instruction format 1400 that make up
the full opcode field 1374 according to one embodiment of
the invention. Specifically, the full opcode field 1374
includes the format field 1340, the base operation field 1342,
and the data element width (W) field 1364. The base
operation field 1342 includes the prefix encoding field 1425,
the opcode map field 1415, and the real opcode field 1430.
Register Index Field

FIG. 14C is a block diagram illustrating the fields of the
specific vector friendly instruction format 1400 that make up
the register index field 1344 according to one embodiment
of the invention. Specifically, the register index field 1344
includes the REX field 1405, the REX' field 1410, the
MODR/M.reg field 1444, the MODR/M.r/m field 1446, the
VVVYV field 1420, xxx field 1454, and the bbb field 1456.
Augmentation Operation Field

FIG. 14D is a block diagram illustrating the fields of the
specific vector friendly instruction format 1400 that make up
the augmentation operation field 1350 according to one
embodiment of the invention. When the class (U) field 1368
contains 0, it signifies EVEX.UO (class A 1368A); when it
contains 1, it signifies EVEX.U1 (class B 1368B). When
U=0 and the MOD field 1442 contains 11 (signifying a no
memory access operation), the alpha field 1352 (EVEX byte
3, bit [7]-EH) is interpreted as the rs field 1352A. When the
rs field 1352A contains a 1 (round 1352A.1), the beta field
1354 (EVEX byte 3, bits [6:4]-SSS) is interpreted as the
round control field 1354A. The round control field 1354A
includes a one bit SAE field 1356 and a two bit round
operation field 1358. When the rs field 1352A contains a 0
(data transform 1352A.2), the beta field 1354 (EVEX byte 3,
bits [6:4]-SSS) is interpreted as a three bit data transform
field 1354B. When U=0 and the MOD field 1442 contains
00, 01, or 10 (signifying a memory access operation), the
alpha field 1352 (EVEX byte 3, bit [7]-EH) is interpreted as

10

15

20

25

30

35

40

45

50

55

60

65

28
the eviction hint (EH) field 1352B and the beta field 1354
(EVEX byte 3, bits [6:4]-SSS) is interpreted as a three bit
data manipulation field 1354C.

When U=1, the alpha field 1352 (EVEX byte 3, bit
[7]-EH) is interpreted as the write mask control (Z) field
1352C. When U=1 and the MOD field 1442 contains 11
(signifying a no memory access operation), part of the beta
field 1354 (EVEX byte 3, bit [4]-S,) is interpreted as the RL
field 1357 A; when it contains a 1 (round 1357A.1) the rest
of the beta field 1354 (EVEX byte 3, bit [6-5]-S,,) is
interpreted as the round operation field 1359A, while when
the RL field 1357 A contains a 0 (VSIZE 1357.A2) the rest
of the beta field 1354 (EVEX byte 3, bit [6-5]-S, ;) is
interpreted as the vector length field 1359B (EVEX byte 3,
bit [6-5]-L, ). When U=1 and the MOD field 1442 contains
00, 01, or 10 (signifying a memory access operation), the
beta field 1354 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as the vector length field 1359B (EVEX byte 3, bit [6-5]-
L,,) and the broadcast field 1357B (EVEX byte 3, bit
[4]-B).

Exemplary Register Architecture

FIG. 15 is a block diagram of a register architecture 1500
according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 1510
that are 512 bits wide; these registers are referenced as
zmmO through zmm31. The lower order 256 bits of the
lower 16 zmm registers are overlaid on registers ymmo0-16.
The lower order 128 bits of the lower 16 zmm registers (the
lower order 128 bits of the ymm registers) are overlaid on
registers xmmO-15. The specific vector friendly instruction
format 1400 operates on these overlaid register file as
illustrated in the below tables.

Adjustable
Vector
Length Class Operations Registers
Instruction A (FIG. 1310, 1315, zmm registers (the
Templates 13A; 1325, 1330 vector length is 64 byte)
that do not U=0)
include the B (FIG. 1312 zmm registers (the
vector length  13B; vector length is 64 byte)
field 1359B U=1)
Instruction B (FIG. 1317, 1327 zZmm, ymm, or Xmm
templates 13B; registers (the vector
that do U=1) length is 64 byte, 32 byte,
include the or 16 byte) depending on
vector length the vector length field
field 1359B 1359B

In other words, the vector length field 1359B sclects

between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 1359B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
1400 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 1515—in the embodiment illus-
trated, there are 8 write mask registers (kO through k7), each
64 bits in size. In an alternate embodiment, the write mask
registers 1515 are 16 bits in size. As previously described, in



US 9,448,795 B2

29

one embodiment of the invention, the vector mask register
kO cannot be used as a write mask; when the encoding that
would normally indicate kO is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively dis-
abling write masking for that instruction.

General-purpose registers 1525—in the embodiment
illustrated, there are sixteen 64-bit general-purpose registers
that are used along with the existing x86 addressing modes
to address memory operands. These registers are referenced
by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP,
and R8 through R15.

Scalar floating point stack register file (x87 stack) 1545,
on which is aliased the MMX packed integer flat register file
1550—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well
as to hold operands for some operations performed between
the MMX and XMM registers.

Alternative embodiments of the invention may use wider
or narrower registers. Additionally, alternative embodiments
of'the invention may use more, less, or different register files
and registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways,
for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures
In-Order and Out-of-Order Core Block Diagram

FIG. 16A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention. FIG. 16B is a block diagram illus-
trating both an exemplary embodiment of an in-order archi-
tecture core and an exemplary register renaming, out-of-
order issue/execution architecture core to be included in a
processor according to embodiments of the invention. The
solid lined boxes in FIGS. 16A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-

10

15

20

25

30

35

40

45

50

55

60

65

30

order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

In FIG. 16A, a processor pipeline 1600 includes a fetch
stage 1602, a length decode stage 1604, a decode stage 1606,
an allocation stage 1608, a renaming stage 1610, a sched-
uling (also known as a dispatch or issue) stage 1612, a
register read/memory read stage 1614, an execute stage
1616, a write back/memory write stage 1618, an exception
handling stage 1622, and a commit stage 1624.

FIG. 16B shows processor core 1690 including a front end
unit 1630 coupled to an execution engine unit 1650, and
both are coupled to a memory unit 1670. The core 1690 may
be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 1690 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

The front end unit 1630 includes a branch prediction unit
1632 coupled to an instruction cache unit 1634, which is
coupled to an instruction translation lookaside buffer (TLB)
1636, which is coupled to an instruction fetch unit 1638,
which is coupled to a decode unit 1640. The decode unit
1640 (or decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 1640 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc. In one embodiment, the core
1690 includes a microcode ROM or other medium that
stores microcode for certain macroinstructions (e.g., in
decode unit 1640 or otherwise within the front end unit
1630). The decode unit 1640 is coupled to a rename/
allocator unit 1652 in the execution engine unit 1650.

The execution engine unit 1650 includes the rename/
allocator unit 1652 coupled to a retirement unit 1654 and a
set of one or more scheduler unit(s) 1656. The scheduler
unit(s) 1656 represents any number of different schedulers,
including reservations stations, central instruction window,
etc. The scheduler unit(s) 1656 is coupled to the physical
register file(s) unit(s) 1658. Each of the physical register
file(s) units 1658 represents one or more physical register
files, different ones of which store one or more different data
types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating
point, status (e.g., an instruction pointer that is the address
of the next instruction to be executed), etc. In one embodi-
ment, the physical register file(s) unit 1658 comprises a
vector registers unit, a write mask registers unit, and a scalar
registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 1658 is over-
lapped by the retirement unit 1654 to illustrate various ways
in which register renaming and out-of-order execution may
be implemented (e.g., using a reorder buffer(s) and a retire-
ment register file(s); using a future file(s), a history buffer(s),
and a retirement register file(s); using a register maps and a
pool of registers; etc.). The retirement unit 1654 and the
physical register file(s) unit(s) 1658 are coupled to the
execution cluster(s) 1660. The execution cluster(s) 1660



US 9,448,795 B2

31

includes a set of one or more execution units 1662 and a set
of one or more memory access units 1664. The execution
units 1662 may perform various operations (e.g., shifts,
addition, subtraction, multiplication) and on various types of
data (e.g., scalar floating point, packed integer, packed
floating point, vector integer, vector floating point). While
some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other
embodiments may include only one execution unit or mul-
tiple execution units that all perform all functions. The
scheduler unit(s) 1656, physical register file(s) unit(s) 1658,
and execution cluster(s) 1660 are shown as being possibly
plural because certain embodiments create separate pipe-
lines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 1664). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 1664 is coupled to the
memory unit 1670, which includes a data TLB unit 1672
coupled to a data cache unit 1674 coupled to a level 2 (L2)
cache unit 1676. In one exemplary embodiment, the memory
access units 1664 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 1672 in the memory unit 1670. The instruc-
tion cache unit 1634 is further coupled to a level 2 (L2)
cache unit 1676 in the memory unit 1670. The [.2 cache unit
1676 is coupled to one or more other levels of cache and
eventually to a main memory.

By way of example, the exemplary register renaming,
out-of-order issue/execution core architecture may imple-
ment the pipeline 1600 as follows: 1) the instruction fetch
1638 performs the fetch and length decoding stages 1602
and 1604; 2) the decode unit 1640 performs the decode stage
1606; 3) the rename/allocator unit 1652 performs the allo-
cation stage 1608 and renaming stage 1610; 4) the scheduler
unit(s) 1656 performs the schedule stage 1612; 5) the
physical register file(s) unit(s) 1658 and the memory unit
1670 perform the register read/memory read stage 1614; the
execution cluster 1660 perform the execute stage 1616; 6)
the memory unit 1670 and the physical register file(s) unit(s)
1658 perform the write back/memory write stage 1618; 7)
various units may be involved in the exception handling
stage 1622; and 8) the retirement unit 1654 and the physical
register file(s) unit(s) 1658 perform the commit stage 1624.

The core 1690 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 1690 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading

5

10

15

20

25

30

35

40

45

50

55

60

65

32

(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 1634/1674 and a shared
L2 cache unit 1676, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

Specific Exemplary in-Order Core Architecture

FIGS. 17A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the
same type and/or different types) in a chip. The logic blocks
communicate through a high-bandwidth interconnect net-
work (e.g., a ring network) with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the application.

FIG. 17A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1702 and with its local subset of the Level 2 (L.2) cache
1704, according to embodiments of the invention. In one
embodiment, an instruction decoder 1700 supports the x86
instruction set with a packed data instruction set extension.
An L1 cache 1706 allows low-latency accesses to cache
memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1708 and
a vector unit 1710 use separate register sets (respectively,
scalar registers 1712 and vector registers 1714) and data
transferred between them is written to memory and then read
back in from a level 1 (LL1) cache 1706, alternative embodi-
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

The local subset of the [.2 cache 1704 is part of a global
L2 cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path
to its own local subset of the 1.2 cache 1704. Data read by
aprocessor core is stored in its 1.2 cache subset 1704 and can
be accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by
a processor core is stored in its own L2 cache subset 1704
and is flushed from other subsets, if necessary. The ring
network ensures coherency for shared data. The ring net-
work is bi-directional to allow agents such as processor
cores, .2 caches and other logic blocks to communicate with
each other within the chip. Each ring data-path is 1012-bits
wide per direction.

FIG. 17B is an expanded view of part of the processor
core in FIG. 17A according to embodiments of the inven-
tion. FIG. 17B includes an L1 data cache 1706 A part of the
L1 cache 1704, as well as more detail regarding the vector
unit 1710 and the vector registers 1714. Specifically, the
vector unit 1710 is a 16-wide vector processing unit (VPU)
(see the 16-wide ALU 1728), which executes one or more of
integer, single-precision float, and double-precision float
instructions. The VPU supports swizzling the register inputs



US 9,448,795 B2

33

with swizzle unit 1720, numeric conversion with numeric
convert units 1722A-B, and replication with replication unit
1724 on the memory input. Write mask registers 1726 allow
predicating resulting vector writes.

Processor with Integrated Memory Controller and Graphics

FIG. 18 is a block diagram of a processor 1800 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
18 illustrate a processor 1800 with a single core 1802A, a
system agent 1810, a set of one or more bus controller units
1816, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1800 with multiple cores
1802A-N, a set of one or more integrated memory controller
unit(s) 1814 in the system agent unit 1810, and special
purpose logic 1808.

Thus, different implementations of the processor 1800
may include: 1) a CPU with the special purpose logic 1808
being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1802A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1802A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1802A-N
being a large number of general purpose in-order cores.
Thus, the processor 1800 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1800 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 1806, and external memory (not shown) coupled to the
set of integrated memory controller units 1814. The set of
shared cache units 1806 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1812 interconnects the integrated
graphics logic 1808, the set of shared cache units 1806, and
the system agent unit 1810/integrated memory controller
unit(s) 1814, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1806 and cores 1802-A-N.

In some embodiments, one or more of the cores 1802A-N
are capable of multithreading. The system agent 1810
includes those components coordinating and operating cores
1802A-N. The system agent unit 1810 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1802A-N and the
integrated graphics logic 1808. The display unit is for
driving one or more externally connected displays.

The cores 1802A-N may be homogenous or heteroge-
neous in terms of architecture instruction set; that is, two or
more of the cores 1802A-N may be capable of execution the

40

45

55

34

same instruction set, while others may be capable of execut-
ing only a subset of that instruction set or a different
instruction set.

Exemplary Computer Architectures

FIGS. 19-22 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 19, shown is a block diagram of a
system 1900 in accordance with one embodiment of the
present invention. The system 1900 may include one or
more processors 1910, 1915, which are coupled to a con-
troller hub 1920. In one embodiment the controller hub 1920
includes a graphics memory controller hub (GMCH) 1990
and an Input/Output Hub (IOH) 1950 (which may be on
separate chips); the GMCH 1990 includes memory and
graphics controllers to which are coupled memory 1940 and
a coprocessor 1945; the IOH 1950 is couples input/output
(I/0) devices 1960 to the GMCH 1990. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1940
and the coprocessor 1945 are coupled directly to the pro-
cessor 1910, and the controller hub 1920 in a single chip
with the IOH 1950.

The optional nature of additional processors 1915 is
denoted in FIG. 19 with broken lines. Each processor 1910,
1915 may include one or more of the processing cores
described herein and may be some version of the processor
1800.

The memory 1940 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 1920 communicates with the processor(s)
1910, 1915 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1995.

In one embodiment, the coprocessor 1945 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub
1920 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1910, 1915 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1910 executes instruc-
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 1910 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1945. Accordingly, the processor
1910 issues these coprocessor instructions (or control sig-
nals representing coprocessor instructions) on a coprocessor
bus or other interconnect, to coprocessor 1945.
Coprocessor(s) 1945 accept and execute the received copro-
cessor instructions.

Referring now to FIG. 20, shown is a block diagram of a
first more specific exemplary system 2000 in accordance



US 9,448,795 B2

35

with an embodiment of the present invention. As shown in
FIG. 20, multiprocessor system 2000 is a point-to-point
interconnect system, and includes a first processor 2070 and
a second processor 2080 coupled via a point-to-point inter-
connect 2050. Each of processors 2070 and 2080 may be
some version of the processor 1800. In one embodiment of
the invention, processors 2070 and 2080 are respectively
processors 1910 and 1915, while coprocessor 2038 is copro-
cessor 1945. In another embodiment, processors 2070 and
2080 are respectively processor 1910 coprocessor 1945.

Processors 2070 and 2080 are shown including integrated
memory controller (IMC) units 2072 and 2082, respectively.
Processor 2070 also includes as part of its bus controller
units point-to-point (P-P) interfaces 2076 and 2078; simi-
larly, second processor 2080 includes P-P interfaces 2086
and 2088. Processors 2070, 2080 may exchange information
via a point-to-point (P-P) interface 2050 using P-P interface
circuits 2078, 2088. As shown in FIG. 20, IMCs 2072 and
2082 couple the processors to respective memories, namely
a memory 2032 and a memory 2034, which may be portions
of main memory locally attached to the respective proces-
SOrS.

Processors 2070, 2080 may each exchange information
with a chipset 2090 via individual P-P interfaces 2052, 2054
using point to point interface circuits 2076, 2094, 2086,
2098. Chipset 2090 may optionally exchange information
with the coprocessor 2038 via a high-performance interface
2039. In one embodiment, the coprocessor 2038 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 2090 may be coupled to a first bus 2016 via an
interface 2096. In one embodiment, first bus 2016 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 20, various /O devices 2014 may be
coupled to first bus 2016, along with a bus bridge 2018
which couples first bus 2016 to a second bus 2020. In one
embodiment, one or more additional processor(s) 2015, such
as coprocessors, high-throughput MIC processors, GPG-
PU’s, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processor, are coupled to first bus
2016. In one embodiment, second bus 2020 may be a low
pin count (LPC) bus. Various devices may be coupled to a
second bus 2020 including, for example, a keyboard and/or
mouse 2022, communication devices 2027 and a storage
unit 2028 such as a disk drive or other mass storage device
which may include instructions/code and data 2030, in one
embodiment. Further, an audio I/O 2024 may be coupled to
the second bus 2020. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 20, a system may implement a multi-drop bus
or other such architecture.

Referring now to FIG. 21, shown is a block diagram of a
second more specific exemplary system 2100 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 20 and 21 bear like reference numerals, and certain

10

15

20

25

30

35

40

45

50

55

60

65

36

aspects of FIG. 20 have been omitted from FIG. 21 in order
to avoid obscuring other aspects of FIG. 21.

FIG. 21 illustrates that the processors 2070, 2080 may
include integrated memory and I/O control logic (“CL”)
2072 and 2082, respectively. Thus, the CL 2072, 2082
include integrated memory controller units and include 1/O
control logic. FIG. 21 illustrates that not only are the
memories 2032, 2034 coupled to the CL. 2072, 2082, but also
that 1/0 devices 2114 are also coupled to the control logic
2072, 2082. Legacy /O devices 2115 are coupled to the
chipset 2090.

Referring now to FIG. 22, shown is a block diagram of a
SoC 2200 in accordance with an embodiment of the present
invention. Similar elements in FIG. 18 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 22, an interconnect unit(s)
2202 is coupled to: an application processor 2210 which
includes a set of one or more cores 202A-N and shared cache
unit(s) 1806; a system agent unit 1810; a bus controller
unit(s) 1816; an integrated memory controller unit(s) 1814;
a set or one or more coprocessors 2220 which may include
integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access
memory (SRAM) unit 2230; a direct memory access (DMA)
unit 2232; and a display unit 2240 for coupling to one or
more external displays. In one embodiment, the
coprocessor(s) 2220 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 2030 illustrated in FIG. 20,
may be applied to input instructions to perform the functions
described herein and generate output information. The out-
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces-
sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of



US 9,448,795 B2

37

articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 23 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 23
shows a program in a high level language 2302 may be
compiled using an x86 compiler 2304 to generate x86 binary
code 2306 that may be natively executed by a processor with
at least one x86 instruction set core 2316. The processor with
at least one x86 instruction set core 2316 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 2304
represents a compiler that is operable to generate x86 binary
code 2306 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 2316. Similarly,
FIG. 23 shows the program in the high level language 2302
may be compiled using an alternative instruction set com-
piler 2308 to generate alternative instruction set binary code
2310 that may be natively executed by a processor without
at least one x86 instruction set core 2314 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,

10

15

20

25

30

35

40

45

50

55

60

65

38

Calif.). The instruction converter 2312 is used to convert the
x86 binary code 2306 into code that may be natively
executed by the processor without an x86 instruction set
core 2314. This converted code is not likely to be the same
as the alternative instruction set binary code 2310 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 2312
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 2306.

Components, features, and details described for any of
FIGS. 4-11 may also optionally be used in any of FIGS. 1-3.
Moreover, components, features, and details described
herein for any of the apparatus may also optionally be used
in any of the methods described herein, which in embodi-
ments may be performed by and/or with such the apparatus.

EXAMPLE EMBODIMENTS

The following examples pertain to further embodiments.
Specifics in the examples may be used anywhere in one or
more embodiments.

Example 1 is a processor. The processor includes a
plurality of packed data registers. The processor also
includes a unit coupled with the packed data registers, the
unit operable, in response to a limited range vector memory
access instruction that is to indicate a source packed memory
indices that is to have a plurality of packed memory indices
selected from 8-bit memory indices and 16-bit memory
indices, to access memory locations, in only a limited range
of'a memory, in response to the limited range vector memory
access instruction.

Example 2 includes the subject matter of claim 1 and
optionally wherein the limited range vector memory access
instruction is to indicate the source packed memory indices
that is to include 8-bit memory indices.

Example 3 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to access memory
locations in the limited range that is to comprise only 256
bytes.

Example 4 includes the subject matter of claim 1 and
optionally wherein the limited range vector memory access
instruction is to indicate the source packed memory indices
that is to include at least 32 memory indices.

Example 5 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to access the limited
range of the memory with a memory address of at least
32-bits.

Example 6 includes the subject matter of claim 5 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to sign extend each of
the memory indices, and apply a scale factor to each of the
sign extended memory indices.

Example 7 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to perform a multiple
data element load that is to load at least one data element at
a memory address that is to be indicated by a memory index
of the plurality and at least one data element at a memory
address that is not to be indicated by a memory index of the
plurality.



US 9,448,795 B2

39

Example 8 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to load the entire
limited range from the memory to storage locations of the
processor.

Example 9 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to perform a multiple
data element load that is to load a plurality of data elements,
and store a first of the plurality of loaded data elements in a
destination storage location that is to be indicated by the
instruction without storing a second of the loaded data
elements in the destination storage location when one of: (a)
the instruction does not indicate a packed data operation
mask; and (b) the instruction indicates a packed data opera-
tion mask but a corresponding mask element of the packed
data operation mask is to be unmasked.

Example 10 includes the subject matter of claim 1 and
optionally wherein the unit, in response to the limited range
vector memory access instruction, is to load the entire
limited range from the memory to storage locations of the
processor, and wherein the unit, in response to the limited
range vector memory access instruction, is to selectively
move a subset of data elements of the entire limited range to
a destination storage location that is to be indicated by the
instruction based on the memory indices.

Example 11 includes the subject matter of any of claims
1-8 and optionally wherein the limited range vector memory
access instruction is to indicate a destination storage loca-
tion, and wherein the unit, in response to the limited range
vector memory access instruction, is to store a packed data
result in the destination storage location, the packed data
result to have a plurality of data elements each from a
memory location in the limited range that is to be indicated
by a corresponding memory index.

Example 12 includes the subject matter of any of claims
1-8 and optionally wherein the limited range vector memory
access instruction is to indicate a source packed data having
a plurality of data elements, and wherein the unit, in
response to the limited range vector memory access instruc-
tion, is to write each data element of the source packed data
to a memory location in the limited range that is to be
indicated by a corresponding memory index.

Example 13 includes the subject matter of any of claims
1-8 and optionally wherein the limited range vector memory
access instruction is to indicate a packed data operation
mask.

Example 14 is a method in a processor. The method
includes receiving a limited range vector memory access
instruction, the limited range vector memory access instruc-
tion indicating a source packed memory indices having a
plurality of packed memory indices selected from 8-bit
memory indices and 16-bit memory indices. The method
also includes accessing memory locations, in only a limited
range of a memory, in response to the limited range vector
memory access instruction.

Example 15 includes the subject matter of claim 14 and
optionally wherein receiving comprises receiving the
instruction that indicates the source packed memory indices,
which includes 8-bit memory indices.

Example 16 includes the subject matter of claim 14 and
optionally wherein accessing comprises accessing memory
locations in the limited range, which consists of 256 bytes.

Example 17 includes the subject matter of claim 14 and
optionally wherein receiving comprises receiving the
instruction indicating a destination storage location, and
further comprising storing a packed data result in the des-

10

15

20

25

30

35

40

45

50

55

60

65

40

tination storage location in response to the instruction, the
packed data result having a plurality of data elements each
from a memory location in the limited range that is indicated
by a corresponding memory index.

Example 18 includes the subject matter of claim 14 and
optionally wherein receiving comprises receiving the
instruction indicating a source packed data having a plurality
of data elements, and wherein accessing comprises writing
each data element of the source packed data to a memory
location in the limited range that is indicated by a corre-
sponding memory index, in response to the instruction.

Example 19 includes the subject matter of claim 14 and
optionally wherein accessing comprises accessing with at
least 32-bit memory addresses.

Example 20 includes the subject matter of claim 14 and
optionally wherein accessing comprises performing a mul-
tiple data element load including loading at least one data
element at a memory address that is indicated by a memory
index of the plurality and at least one data element at a
memory address that is not indicated by a memory index of
the plurality.

Example 21 includes the subject matter of claim 14 and
optionally further includes performing a multiple data ele-
ment load to load a plurality of data elements and storing a
first of the loaded data elements in a destination storage
location indicated by the instruction without storing a sec-
ond of the loaded data elements in the destination storage
location when one of: (a) the instruction does not use a
packed data operation mask; and (b) the instruction uses a
packed data operation mask but a corresponding mask
element of the packed data operation mask is unmasked.

Example 22 is a system to process instructions. The
system includes an interconnect. The system also includes a
processor coupled with the interconnect. The system also
includes a dynamic random access memory (DRAM)
coupled with the interconnect, the DRAM storing a limited
range vector memory access instruction, the limited range
vector memory access instruction to indicate a source
packed memory indices having a plurality of packed
memory indices selected from 8-bit memory indices and
16-bit memory indices, the limited range vector memory
access instruction, if executed by the processor, operable to
cause the processor to perform operations comprising access
memory locations, in only a limited range of a memory.

Example 23 includes the subject matter of Example 22
and optionally wherein the limited range vector memory
access instruction is to indicate the source packed memory
indices that is to include 8-bit memory indices, wherein the
instruction, if executed by the processor, is to be operable to
cause the processor to access the limited range with a
memory address of at least 32-bits.

Example 24 is an article of manufacture comprising a
non-transitory machine-readable storage medium, the non-
transitory machine-readable storage medium storing a lim-
ited range vector memory access instruction, the limited
range vector memory access instruction indicating a source
packed memory indices having a plurality of packed
memory indices selected from 8-bit memory indices and
16-bit memory indices, and the limited range vector memory
access instruction if executed by a machine operable to
cause the machine to perform operations comprising access-
ing memory locations, in only a limited range of a memory.

Example 25 includes the subject matter Example 24 an
optionally wherein the limited range vector memory access
instruction is to indicate the source packed memory indices



US 9,448,795 B2

41

that is to include 8-bit memory indices, and wherein the
source packed memory indices that is to include at least 32
memory indices.

Example 26 is an apparatus to perform the method of any
of Examples 14-21.

Example 27 is an apparatus comprising means for per-
forming the method of any of Examples 14-21.

Example 28 is a machine-readable storage medium stor-
ing an instruction that if executed by a machine are to cause
the machine to perform the method of any of Examples
14-21.

Example 29 is a processor to execute an instruction
substantially as described herein.

Example 30 is a processor to perform a method substan-
tially as described herein.

Example 31 is a processor comprising means for perform-
ing a method substantially as described herein.

In the description and claims, the terms “coupled” and/or
“connected,” along with their derivatives, have be used. It
should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are
in direct physical or electrical contact. However, “coupled”
may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact
with each other. For example, an execution unit may be
coupled with a register or a decode logic through one or
more intervening components. In the figures, arrows are
used to show connections and couplings.

In the description and claims, the term “logic” may have
been used. As used herein, logic may include a module such
as hardware, firmware, software, or various combinations
thereof. Examples of logic include integrated circuitry,
application specific integrated circuits, analog circuits, digi-
tal circuits, programmed logic devices, memory devices
including instructions, etc. In some embodiments, hardware
logic may include transistors and/or gates potentially along
with other circuitry components.

In the description above, specific details have been set
forth in order to provide a thorough understanding of the
embodiments. However, other embodiments may be prac-
ticed without some of these specific details. The scope of the
invention is not to be determined by the specific examples
provided above but only by the claims below. All equivalent
relationships to those illustrated in the drawings and
described in the specification are encompassed within
embodiments. In other instances, well-known circuits, struc-
tures, devices, and operations have been shown in block
diagram form or without detail in order to avoid obscuring
the understanding of the description. Where multiple com-
ponents have been shown and described, in some cases these
multiple components may be incorporated into one compo-
nent. Where a single component has been shown and
described, in some cases this single component may be
separated into two or more components.

Various operations and methods have been described.
Some of the methods have been described in a relatively
basic form in the flow diagrams, but operations may option-
ally be added to and/or removed from the methods. In
addition, while the flow diagrams show a particular order of
the operations according to example embodiments, that
particular order is exemplary. Alternate embodiments may
optionally perform the operations in different order, combine
certain operations, overlap certain operations, etc.

10

15

20

25

30

35

40

45

50

55

60

65

42

Certain operations may be performed by hardware com-
ponents, or may be embodied in machine-executable or
circuit-executable instructions, that may be used to cause
and/or result in a machine, circuit, or hardware component
(e.g., a processor, potion of a processor, circuit, etc.) pro-
grammed with the instructions performing the operations.
The operations may also optionally be performed by a
combination of hardware and software. A processor,
machine, circuit, or hardware may include specific or par-
ticular circuitry or other logic (e.g., hardware potentially
combined with firmware and/or software) is operable to
execute and/or process the instruction and store a result in
response to the instruction.

Some embodiments include an article of manufacture
(e.g., a computer program product) that includes a machine-
readable medium. The medium may include a mechanism
that provides, for example stores, information in a form that
is readable by the machine. The machine-readable medium
may provide, or have stored thereon, an instruction or
sequence of instructions, that if and/or when executed by a
machine are operable to cause the machine to perform
and/or result in the machine performing one or operations,
methods, or techniques disclosed herein. The machine-
readable medium may provide, for example store, one or
more of the embodiments of the instructions disclosed
herein.

In some embodiments, the machine-readable medium
may include a tangible and/or non-transitory machine-read-
able storage medium. For example, the tangible and/or
non-transitory machine-readable storage medium may
include a floppy diskette, an optical storage medium, an
optical disk, an optical data storage device, a CD-ROM, a
magnetic disk, a magneto-optical disk, a read only memory
(ROM), a programmable ROM (PROM), an erasable-and-
programmable ROM (EPROM), an electrically-erasable-
and-programmable ROM (EEPROM), a random access
memory (RAM), a static-RAM (SRAM), a dynamic-RAM
(DRAM), a Flash memory, a phase-change memory, a
phase-change data storage material, a non-volatile memory,
a non-volatile data storage device, a non-transitory memory,
a non-transitory data storage device, or the like. The non-
transitory machine-readable storage medium does not con-
sist of a transitory propagated signal. In another embodi-
ment, the machine-readable medium may include a
transitory machine-readable communication medium, for
example, the electrical, optical, acoustical or other forms of
propagated signals, such as carrier waves, infrared signals,
digital signals, or the like.

Examples of suitable machines include, but are not lim-
ited to, general-purpose processors, special-purpose proces-
sors, instruction processing apparatus, digital logic circuits,
integrated circuits, and the like. Still other examples of
suitable machines include computing devices and other
electronic devices that incorporate such processors, instruc-
tion processing apparatus, digital logic circuits, or integrated
circuits. Examples of such computing devices and electronic
devices include, but are not limited to, desktop computers,
laptop computers, notebook computers, tablet computers,
netbooks, smartphones, cellular phones, servers, network
devices (e.g., routers and switches.), Mobile Internet devices
(MIDs), media players, smart televisions, nettops, set-top
boxes, and video game controllers.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “one or more embodiments,”
“some embodiments,” for example, indicates that a particu-
lar feature may be included in the practice of the invention
but is not necessarily required to be. Similarly, in the

2



US 9,448,795 B2

43

description various features are sometimes grouped together
in a single embodiment, Figure, or description thereof for
the purpose of streamlining the disclosure and aiding in the
understanding of various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the invention requires more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive aspects lie in less than all features
of a single disclosed embodiment. Thus, the claims follow-
ing the Detailed Description are hereby expressly incorpo-
rated into this Detailed Description, with each claim stand-
ing on its own as a separate embodiment of the invention.

What is claimed is:

1. A processor comprising:

a plurality of packed data registers;

a decode unit to decode an instruction that is to indicate

a source packed data register of the plurality of packed
data registers that is to have at least four packed
memory indices, which are each to have no more than
16-bits, and the instruction to indicate a destination
packed data register of the plurality of packed data
registers; and

an execution unit coupled with the decode unit and

coupled with the packed data registers, the execution
unit operable, in response to the instruction, to store a
packed data result in the destination packed data reg-
ister, the packed data result to have at least four data
elements that are each to have been loaded from a
memory location, in only a limited range of a memory,
that is to have been indicated by a different correspond-
ing one of the at least four packed memory indices.

2. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate the source packed
data register that is to have at least four 8-bit packed memory
indices.

3. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to load each of the at least
four data elements from the limited range in the memory that
is to comprise only 256 bytes.

4. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate the source packed
data register that is to have at least thirty two packed
memory indices.

5. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to load each of the at least
four data elements from the limited range in the memory
with a memory address of at least 32-bits.

6. The processor of claim 5, wherein the execution unit,
in response to the instruction, is to:

sign extend each of the memory indices; and

apply a scale factor to each of the sign extended memory

indices.

7. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to perform a multiple data
element load that is to load at least one data element at a
memory location that is to be indicated by a corresponding
one of the packed memory indices and at least one other data
element at a memory location that is not to be separately
indicated by different corresponding one of the packed
memory indices.

8. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to load the entire limited
range of the memory to storage locations of the processor.

9. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to:

perform a multiple data element load that is to load a

plurality of data elements;

5

20

25

30

35

40

45

50

55

60

65

44

store a first of the plurality of loaded data elements in the
destination packed data register that is to be indicated
by the instruction without storing a second of the
loaded data elements in the destination packed data
register when one of:

(a) the instruction does not indicate a packed data opera-

tion mask; and

(b) the instruction indicates a packed data operation mask

but a corresponding mask element of the packed data
operation mask is unmasked.

10. The processor of claim 1, wherein the execution unit,
in response to the instruction, is to:

load the entire limited range of the memory to storage

locations of the processor; and

selectively move a subset of the loaded data elements of

the entire limited range of the memory to the destina-
tion packed data register based on the packed memory
indices.
11. The processor of claim 1, wherein the decode unit is
to decode the instruction which is also to indicate a packed
data operation mask.
12. A processor comprising:
a plurality of packed data registers;
a decode unit to decode an instruction that is to indicate
a source packed data register of the plurality of packed
data registers that is to have at least four packed
memory indices, which are each to have no more than
16-bits, the instruction to indicate a packed data opera-
tion mask that is to have at least four mask elements,
and the instruction to indicate a destination packed data
register of the plurality of packed data registers; and

an execution unit coupled with the decode unit and
coupled with the packed data registers, the execution
unit operable, in response to the instruction, to store a
packed data result in the destination packed data reg-
ister, the packed data result to have a plurality of data
elements that are each to correspond to a different one
of the at least four mask elements of the packed data
operation mask, each data elements of the packed data
result that does not correspond to a masked out mask
element of the packed data operation mask to have been
loaded from a memory location, in only a limited range
of a memory, with a memory address of at least 32-bits
that is to be associated with a corresponding one of the
at least four packed memory indices.

13. The processor of claim 12, wherein the execution unit,
in response to the instruction, is to:

sign extend each of the memory indices; and

apply a scale factor to each of the sign extended memory

indices.

14. The processor of claim 12, wherein the decode unit is
to decode the instruction that is to indicate the source packed
data register that is to have at least four 8-bit packed memory
indices.

15. The processor of claim 12, wherein the execution unit,
in response to the instruction, is to load each of the at least
four data elements from the limited range in the memory that
is to comprise no more than 256 bytes.

16. The processor of claim 12, wherein the execution unit,
in response to the instruction, is to perform a multiple data
element load that is to load at least one data element at a
memory location that is to be indicated by a corresponding
one of the packed memory indices and at least one other data
element at a memory location that is not to be separately
indicated by different corresponding one of the packed
memory indices.



US 9,448,795 B2

45

17. The processor of claim 12, wherein the execution unit,
in response to the instruction, is to load the entire limited
range of the memory to storage locations of the processor.

18. The processor of claim 12, wherein the execution unit,
in response to the instruction, is to:

perform a multiple data element load that is to load a
plurality of data elements;

store a first of the plurality of loaded data elements in the
destination packed data register that is to be indicated
by the instruction without storing a second of the
loaded data elements in the destination packed data
register when one of:

(a) the instruction does not indicate a packed data opera-
tion mask; and

(b) the instruction indicates a packed data operation mask
but a corresponding mask element of the packed data
operation mask is unmasked.

19. A processor comprising:

a plurality of packed data registers;

a decode unit to decode an instruction that is to indicate
a first source packed data register of the plurality of
packed data registers that is to have at least four packed
memory indices, which are each to have no more than
16-bits, and the instruction to indicate a second source
packed data register of the plurality of packed data
registers that is to have at least four data elements that
are each to correspond to a different one of the at least
four packed memory indices; and

an execution unit coupled with the decode unit and
coupled with the packed data registers, the execution
unit operable, in response to the instruction, to store
each of the at least four data elements of the second

5

46

source packed data register to a memory location, in
only a limited range of a memory, that is to have been
indicated by the corresponding memory index of the at
least four packed memory indices.

20. The processor of claim 19, wherein the decode unit is
to decode the instruction that is to indicate the first source
packed data register that is to have at least four 8-bit packed
memory indices.

21. The processor of claim 19, wherein the execution unit,
in response to the instruction, is to store the at least four data
elements of the second source packed data register to the
memory locations in only the limited range of the memory
that is to comprise only 256 bytes.

22. The processor of claim 19, wherein the decode unit is
to decode the instruction that is to indicate the first source
packed data register that is to have at least thirty two packed
memory indices.

23. The processor of claim 19, wherein the execution unit,
in response to the instruction, is to store each of the at least
four data elements of the second source packed data register
to the memory location, in only the limited range of the
memory, with a memory address of at least 32-bits.

24. The processor of claim 23, wherein the execution unit,
in response to the instruction, is to:

sign extend each of the memory indices; and

apply a scale factor to each of the sign extended memory

indices.

25. The processor of claim 19, wherein the decode unit is
to decode the instruction which is also to indicate a packed
data operation mask.



